

TABU SEARCH*

Fred Glovera

Manuel Lagunab

a OptTek Systems, Inc., 2241 17th Street, Boulder, CO 80304 USA

glover@opttek.com
b Leeds School of Business, University of Colorado, Boulder, CO 80309 USA

laguna@colorado.edu

Chapter to appear in the Handbook of Combinatorial Optimization, 2nd Edition, Panos Pardalos,
Ding-Zu Du and Ronald Graham, eds.

Abstract

Tabu Search, also called Adaptive Memory Programming, is a method for solving challenging
problems in the field of optimization. The goal is to identify the best decisions or actions in
order to maximize some measure of merit (such as maximizing profit, effectiveness, quality,
social or scientific benefit), or to minimize some measure of demerit (cost, inefficiency, waste,
social or scientific loss).

Practical applications in optimization addressed by Tabu Search are exceedingly challenging
and pervade the fields of business, engineering, economics and science. Everyday examples
include problems in resource management, financial and investment planning, healthcare
systems, energy and environmental policy, pattern classification, biotechnology and a host of
other areas. The complexity and importance of such problems has motivated a wealth of
academic and practical research throughout the past several decades, in an effort to discover
methods that are able to find solutions of higher quality than many found in the past and
capable of producing such solutions within feasible time limits or at reduced computational
cost.

Tabu search has emerged as one of the leading technologies for handling optimization
problems that have proved difficult or impossible to solve with classical procedures that
dominated the attention of textbooks and were considered the mainstays of available
alternatives until recent times. A key feature of tabu search, underscored by its adaptive
memory programming alias, is the use of special strategies designed to exploit adaptive
memory. The idea is that an effective search for optimal solutions should involve a process of
flexibly responding to the solution landscape in a manner that permits it to learn appropriate
directions to take along with appropriate departures to explore new terrain. The adaptive
memory feature of tabu search and allows the implementation of procedures that are capable
of searching this terrain economically and effectively.

* The material of this chapter is in part adapted from the book Tabu Search, by Fred Glover and Manuel Laguna,
Kluwer Academic Publishers, 1997.

2 Glover and Laguna

Introduction

Faced with the challenge of solving hard optimization problems that abound in the real world,
classical methods often encounter great difficulty. Vitally important applications in business,
engineering, economics and science cannot be tackled with any reasonable hope of success,
within practical time horizons, by solution methods that have been the predominant focus of
academic research throughout the past three decades (and which are still the focus of many
textbooks).

The meta-heuristic approach called tabu search (TS) is dramatically changing our ability to
solve problems of practical significance. Current applications of TS span the realms of
resource planning, telecommunications, VLSI design, financial analysis, scheduling, space
planning, energy distribution, molecular engineering, logistics, pattern classification, flexible
manufacturing, waste management, mineral exploration, biomedical analysis, environmental
conservation and scores of others. In recent years, journals in a wide variety of fields have
published tutorial articles and computational studies documenting successes by tabu search
in extending the frontier of problems that can be handled effectively — yielding solutions whose
quality often significantly surpasses that obtained by methods previously applied. Table 1.1
gives a partial catalog of example applications. A more comprehensive list, including summary
descriptions of gains achieved from practical implementations, can be found in Glover and
Laguna, 1997. Recent TS developments and applications can also be found in the Tabu Search
Vignettes section of the web page http://spot.colorado.edu/~glover.

Main Text

1. Tabu Search Features and Relevance

A distinguishing feature of tabu search is embodied in its exploitation of adaptive forms of
memory, which equips it to penetrate complexities that often confound alternative approaches.
Yet we are only beginning to tap the rich potential of adaptive memory strategies, and the
discoveries that lie ahead promise to be as important and exciting as those made to date. The
knowledge and principles that have emerged from the TS framework give a foundation to create
practical systems whose capabilities markedly exceed those available earlier. At the same time,
there are many untried variations that may lead to further advances. A conspicuous feature of
tabu search is that it is dynamically growing and evolving, drawing on important contributions
by many researchers.

Tabu Search 3

Table 1.1. Illustrative tabu search applications.

Scheduling
 Flow-Time Cell Manufacturing
 Heterogeneous Processor Scheduling
 Workforce Planning
 Classroom Scheduling
 Machine Scheduling
 Flow Shop Scheduling
 Job Shop Scheduling
 Sequencing and Batching

Telecommunications
 Call Routing
 Bandwidth Packing
 Hub Facility Location
 Path Assignment
 Network Design for Services
 Customer Discount Planning
 Failure Immune Architecture
 Synchronous Optical Networks

Design
 Computer-Aided Design
 Fault Tolerant Networks
 Transport Network Design
 Architectural Space Planning
 Diagram Coherency
 Fixed Charge Network Design
 Irregular Cutting Problems

Production, Inventory and Investment
 Flexible Manufacturing
 Just-in-Time Production
 Capacitated MRP
 Part Selection
 Multi-item Inventory Planning
 Volume Discount Acquisition
 Fixed Mix Investment

Location and Allocation
 Supply Chain Analysis
 Multicommodity Location/Allocation
 Quadratic Assignment
 Quadratic Semi-Assignment
 Multilevel Generalized Assignment
 Lay-Out Planning
 Off-Shore Oil Exploration

Routing
 Vehicle Routing
 Capacitated Routing
 Time Window Routing
 Multi-Mode Routing
 Mixed Fleet Routing
 Traveling Salesman
 Traveling Purchaser

Logic and Artificial Intelligence
 Maximum Satisfiability
 Probabilistic Logic
 Clustering
 Pattern Recognition/Classification
 Data Integrity
 Neural Network |Training and Design

Graph Optimization
 Graph Partitioning
 Graph Coloring
 Clique Partitioning
 Maximum Clique Problems
 Maximum Planner Graphs
 P-Median Problems

Technology
 Seismic Inversion
 Electrical Power Distribution
 Engineering Structural Design
 Coordination of Energy Resources
 Space Station Construction
 DNA Sequencing
 Circuit Cell Placement
 Computer Aided Molecular Design

General Combinational Optimization
 Zero-One Programming
 Fixed Charge Optimization
 Nonconvex Nonlinear Programming
 All-or-None Networks
 Bilevel Programming
 Multi-objective Discrete Optimization
 Hyperplane Splitting
 General Mixed Integer Optimization

1.1 General Tenets

The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the
aborigines of Tonga island to indicate things that cannot be touched because they are sacred.

4 Glover and Laguna

According to Webster's Dictionary, the word now also means “a prohibition imposed by social
custom as a protective measure" or of something "banned as constituting a risk.” These
current more pragmatic senses of the word accord well with the theme of tabu search. The risk
to be avoided in this case is that of following a counter-productive course, including one which
may lead to entrapment without hope of escape. On the other hand, as in the broader social
context where “protective prohibitions” are capable of being superseded when the occasion
demands, the “tabus” of tabu search are to be overruled when evidence of a preferred
alternative becomes compelling.

The most important association with traditional usage, however, stems from the fact that tabus
as normally conceived are transmitted by means of a social memory which is subject to
modification over time. This creates the fundamental link to the meaning of "tabu" in tabu
search. The forbidden elements of tabu search receive their status by reliance on an evolving
memory, which allows this status to shift according to time and circumstance.

More particularly, tabu search is based on the premise that problem solving, in order to qualify
as intelligent, must incorporate adaptive memory and responsive exploration. The adaptive
memory feature of TS allows the implementation of procedures that are capable of searching
the solution space economically and effectively. Since local choices are guided by information
collected during the search, TS contrasts with memoryless designs that heavily rely on
semirandom processes that implement a form of sampling. Examples of memoryless methods
include semigreedy heuristics and the prominent “genetic” and “annealing” approaches
inspired by metaphors of physics and biology. Adaptive memory also contrasts with rigid
memory designs typical of branch and bound strategies. (It can be argued that some types of
evolutionary procedures that operate by combining solutions, such as genetic algorithms,
embody a form of implicit memory. Special links with evolutionary methods, and implications
for establishing more effective variants of them, are discussed in Section 5.)

The emphasis on responsive exploration in tabu search, whether in a deterministic or
probabilistic implementation, derives from the supposition that a bad strategic choice can yield
more information than a good random choice. In a system that uses memory, a bad choice
based on strategy can provide useful clues about how the strategy may profitably be changed.
(Even in a space with significant randomness a purposeful design can be more adept at
uncovering the imprint of structure.)

Responsive exploration integrates the basic principles of intelligent search, i.e., exploiting good
solution features while exploring new promising regions. Tabu search is concerned with
finding new and more effective ways of taking advantage of the mechanisms associated with
both adaptive memory and responsive exploration. The development of new designs and
strategic mixes makes TS a fertile area for research and empirical study.

1.2 Use of Memory

The memory structures in tabu search operate by reference to four principal dimensions,
consisting of recency, frequency, quality, and influence (Figure 1.1). Recency-based and
frequency-based based memory complement each other, and have important characteristics we
amplify in later sections. The quality dimension refers to the ability to differentiate the merit of
solutions visited during the search. In this context, memory can be used to identify elements
that are common to good solutions or to paths that lead to such solutions. Operationally,
quality becomes a foundation for incentive-based learning, where inducements are provided to
reinforce actions that lead to good solutions and penalties are provided to discourage actions

Tabu Search 5

that lead to poor solutions. The flexibility of these memory structures allows the search to be
guided in a multi-objective environment, where the goodness of a particular search direction
may be determined by more than one function. The tabu search concept of quality is broader
than the one implicitly used by standard optimization methods.

The fourth dimension, influence, considers the impact of the choices made during the search,
not only on quality but also on structure. (In a sense, quality may be regarded as a special
form of influence.) Recording information about the influence of choices on particular solution
elements incorporates an additional level of learning. By contrast, in branch and bound, for
example, the separation rules are prespecified and the branching directions remain fixed, once
selected, at a given node of a decision tree. It is clear however that certain decisions have more
influence than others as a function of the neighborhood of moves employed and the way that
this neighborhood is negotiated (e.g., choices near the root of a branch and bound tree are
quite influential when using a depth-first strategy). The assessment and exploitation of
influence by a memory more flexible than embodied in such tree searches is an important
feature of the TS framework.

The memory used in tabu search is both explicit and attributive. Explicit memory records
complete solutions, typically consisting of elite solutions visited during the search. An
extension of this memory records highly attractive but unexplored neighbors of elite solutions.
The memorized elite solutions (or their attractive neighbors) are used to expand the local
search, as indicated in Section 3. In some cases explicit memory has been used to guide the
search and avoid visiting solutions more than once. This application is limited, because clever
data structures must be designed to avoid excessive memory requirements.

Alternatively, TS uses attributive memory for guiding purposes. This type of memory records
information about solution attributes that change in moving from one solution to another. For
example, in a graph or network setting, attributes can consist of nodes or arcs that are added,
dropped or repositioned by the moving mechanism. In production scheduling, the index of jobs
may be used as attributes to inhibit or encourage the method to follow certain search
directions.

1.3 Intensification and Diversification

Two highly important components of tabu search are intensification and diversification
strategies. Intensification strategies are based on modifying choice rules to encourage move

Fig. 1.1 Four TS dimensions.

Quality Influence

Recency Frequency

MEMORY STRUCTURES

6 Glover and Laguna

combinations and solution features historically found good. They may also initiate a return to
attractive regions to search them more thoroughly. Since elite solutions must be recorded in
order to examine their immediate neighborhoods, explicit memory is closely related to the
implementation of intensification strategies. As Figure 1.2 illustrates, the main difference
between intensification and diversification is that during an intensification stage the search
focuses on examining neighbors of elite solutions.

Here the term “neighbors” has a broader meaning than in the usual context of “neighborhood
search.” That is, in addition to considering solutions that are adjacent or close to elite
solutions by means of standard move mechanisms, intensification strategies generate
“neighbors” by either grafting together components of good solution or by using modified
evaluation strategies that favor the introduction of such components into a current (evolving)
solution. The diversification stage on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various significant ways from
those seen before. Again, such an approach can be based on generating subassemblies of
solution components that are then “fleshed out” to produce full solutions, or can rely on
modified evaluations as embodied, for example, in the use of penalty / incentive functions.

Intensification strategies require a means for identifying a set of elite solutions as basis for
incorporating good attributes into newly created solutions. Membership in the elite set is often
determined by setting a threshold which is connected to the objective function value of the best
solution found during the search. However, considerations of clustering and “anti-clustering”
are also relevant for generating such a set, and more particularly for generating subsets of
solutions that may be used for specific phases of intensification and diversification. In the
following sections, we show how the treatment of such concerns can be enhanced by making
use of special memory structures. The TS notions of intensification and diversification are
beginning to find their way into other meta-heuristics, and it is important to keep in mind (as
we subsequently demonstrate) that these ideas are somewhat different than the old control
theory concepts of “exploitation” and “exploration,” especially in their implications for
developing effective problem solving strategies.

2. Tabu Search Foundations and Short Term Memory

Tabu search can be applied directly to verbal or symbolic statements of many kinds of decision
problems, without the need to transform them into mathematical formulations. Nevertheless,
it is useful to introduce mathematical notation to express a broad class of these problems, as a
basis for describing certain features of tabu search. We characterize this class of problems as

Fig. 1.2 Intensification and diversification.

Unvisited solutions Neighbors of

elite solutions

Tabu Search 7

that of optimizing (minimizing or maximizing) a function f(x) subject to x ∈X , where f(x) may be
linear or nonlinear, and the set X summarizes constraints on the vector of decision variables x.
The constraints may include linear or nonlinear inequalities, and may compel all or some
components of x to receive discrete values. While this representation is useful for discussing a
number of problem solving considerations, we emphasize again that in many applications of
combinatorial optimization, the problem of interest may not be easily formulated as an
objective function subject to a set of constraints. The requirement x ∈X , for example, may
specify logical conditions or interconnections that would be cumbersome to formulate
mathematically, but may be better be left as verbal stipulations that can be then coded as
rules.

Tabu search begins in the same way as ordinary local or neighborhood search, proceeding
iteratively from one point (solution) to another until a chosen termination criterion is satisfied.
Each x ∈X has an associated neighborhood ()N Xx ⊂ , and each solution ()′ ∈x xN is reached
from x by an operation called a move.

As an initial point of departure, we may contrast TS with a simple descent method where the
goal is to minimize f(x) (or a corresponding ascent method where the goal is to maximize f(x)).
Such a method only permits moves to neighbor solutions that improve the current objective
function value and ends when no improving solutions can be found. A pseudo-code of a
generic descent method is presented in Figure 2.1. The final x obtained by a descent method is
called a local optimum, since it is at least as good or better than all solutions in its
neighborhood. The evident shortcoming of a descent method is that such a local optimum in
most cases will not be a global optimum, i.e., it usually will not minimize f(x) over all x ∈X .

The version of a descent method called steepest descent scans the entire neighborhood of x in
search of a neighbor solution ′x that gives a smallest ()f x ′ value over ()′ ∈x xN . Steepest
descent implementations of some types of solution approaches (such as certain path
augmentation algorithms in networks and matroids) are guaranteed to yield globally optimal
solutions for the problems they are designed to handle, while other forms of descent may
terminate with local optima that are not global optima. In spite of this attractive feature, in
certain settings steepest descent is sometimes impractical because it is computationally too
expensive, as where N(x) contains many elements or each element is costly to retrieve or
evaluate. Still, it is often valuable to choose an ′x at each iteration that yields a “good” if not
smallest ()f x ′ value.

The relevance of choosing good solutions from current neighborhoods is magnified when the
guidance mechanisms of tabu search are introduced to go beyond the locally optimal
termination point of a descent method. Thus, an important first level consideration for tabu
search is to determine an appropriate candidate list strategy for narrowing the examination of

Fig. 2.1 Descent method.

1) Choose x ∈X to start the process.
2) Find ()′ ∈x xN such that () ()f x f x′ < .
3) If no such ′x can be found, x is the local

optimum and the method stops.
4) Otherwise, designate ′x to be the new x and

go to 2).

8 Glover and Laguna

elements of N(x), in order to achieve an effective tradeoff between the quality of x′ and the effort
expended to find it. Here quality may involve considerations beyond those narrowly reflected
by the value of ()f x ′ . If a neighborhood space is totally random, then of course nothing will
work better than a totally random choice. (In such a case there is no merit in trying to devise
an effective solution procedure.) Assuming that neighborhoods can be identified that are
reasonably meaningful for a given class of problems, the challenge is to define solution quality
appropriately so that evaluations likewise will have meaning. By the TS orientation, the ability
to use history in creating such evaluations then becomes important for devising effective
methods

To give a foundation for understanding the basic issues involved, we turn our attention to the
following illustrative example, which will also be used as a basis for illustrating various aspects
of tabu search in later sections.

2.1 Memory and Tabu Classifications

An important distinction in TS arises by differentiating between short term memory and longer
term memory. Each type of memory is accompanied by its own special strategies. However,
the effect of both types of memory may be viewed as modifying the neighborhood N(x) of the
current solution x. The modified neighborhood, which we denote by N*(x), is the result of
maintaining a selective history of the states encountered during the search.

In the TS strategies based on short term considerations, N*(x) characteristically is a subset of
N(x), and the tabu classification serves to identify elements of N(x) excluded from N*(x). In TS
strategies that include longer term considerations, N*(x) may also be expanded to include
solutions not ordinarily found in N(x). Characterized in this way, TS may be viewed as a
dynamic neighborhood method. This means that the neighborhood of x is not a static set, but
rather a set that can change according to the history of the search. This feature of a
dynamically changing neighborhood also applies to the consideration of selecting different
component neighborhoods from a compound neighborhood that encompasses multiple types or
levels of moves, and provides an important basis for parallel processing. Characteristically, a
TS process based strictly on short term strategies may allow a solution x to be visited more
than once, but it is likely that the corresponding reduced neighborhood N*(x) will be different
each time. With the inclusion of longer term considerations, the likelihood of duplicating a
previous neighborhood upon revisiting a solution, and more generally of making choices that
repeatedly visit only a limited subset of X, is all but nonexistent. From a practical standpoint,
the method will characteristically identify an optimal or near optimal solution long before a
substantial portion of X is examined.

A crucial aspect of TS involves the choice of an appropriate definition of N*(x). Due to the
exploitation of memory, N*(x) depends upon the trajectory followed in moving from one solution
to the next (or upon a collection of such trajectories in a parallel processing environment).

The approach of storing complete solutions (explicit memory) generally consumes an enormous
amount of space and time when applied to each solution generated. A scheme that emulates
this approach with limited memory requirements is given by the use of hash functions. (Also,
as will be seen, explicit memory has a valuable role when selectively applied in strategies that
record and analyze certain “special” solutions.) Regardless of the implementation details, short
term memory functions provide one of the important cornerstones of the TS methodology.
These functions give the search the opportunity to continue beyond local optima, by allowing
the execution of nonimproving moves coupled with the modification of the neighborhood

Tabu Search 9

structure of subsequent solutions. However, instead of recording full solutions, these memory
structures are generally based on recording attributes (attributive memory). In addition, short
term memory is often based on the most recent history of the search trajectory.

2.2 Recency-Based Memory

The most commonly used short term memory keeps track of solutions attributes that have
changed during the recent past, and is called recency-based memory. This is the kind of
memory that is included in most short descriptions of tabu search in the literature (although a
number of its aspects are often left out by popular summaries).

To exploit this memory, selected attributes that occur in solutions recently visited are labeled
tabu-active, and solutions that contain tabu-active elements, or particular combinations of
these attributes, are those that become tabu. This prevents certain solutions from the recent
past from belonging to N*(x) and hence from being revisited. Other solutions that share such
tabu-active attributes are also similarly prevented from being visited. Note that while the tabu
classification strictly refers to solutions that are forbidden to be visited, by virtue of containing
tabu-active attributes (or more generally by violating certain restriction based on these
attributes), we also often refer to moves that lead to such solutions as being tabu. We
illustrate these points with the following example.

Minimum k-Tree Problem Example

The Minimum k-Tree problem seeks a tree consisting of k edges in a graph so that the sum of
the weights of these edges is minimum (Lokketangen, et al. 1994). An instance of this problem
is given in Figure 2.2, where nodes are shown as numbered circles, and edges are shown as
lines that join pairs of nodes (the two “endpoint” nodes that determine the edge). Edge weights
are shown as the numbers attached to these lines. A tree is a set of edges that contains no
cycles, i.e., that contains no paths that start and end at the same node (without retracing any
edges).

Assume that the move mechanism is defined by edge-swapping, as subsequently described,
and that a greedy procedure is used to find an initial solution. The greedy construction starts
by choosing the edge (i, j) with the smallest weight in the graph, where i and j are the indexes of
the nodes that are the endpoints of the edge. The remaining k-1 edges are chosen successively

Fig. 2.2 Weighted undirected graph.

1 4 6 9 11

2 3 5 12

7 8 10

1

26

25

6

2017

15

8 6

20

16

16

18 16

23

9 16

24

7 9

9

10 Glover and Laguna

to minimize the increase in total weight at each step, where the edges considered meet exactly
one node from those that are endpoints of edges previously chosen. For k = 4, the greedy
construction performs the steps in Table 2.1.

Table 2.1 Greedy construction.

Step Candidates Selection Total Weight

1 (1,2) (1,2) 1

2 (1,4), (2,3) (1,4) 26

3 (2,3), (3,4), (4,6), (4,7) (4,7) 34

4 (2,3), (3,4), (4,6), (6,7), (7,8) (6,7) 40

The construction starts by choosing edge (1,2) with a weight of 1 (the smallest weight of any
edge in the graph). After this selection, the candidate edges are those that connect the nodes
in the current partial tree with those nodes not in the tree (i.e., edges (1,4) and (2,3)). Since
edge (1,4) minimizes the weight increase, it is chosen to be part of the partial solution. The
rest of the selections follow the same logic, and the construction ends when the tree consists of
4 edges (i.e., the value of k). The initial solution in this particular case has a total weight of 40.

The swap move mechanism, which is used from this point onward, replaces a selected edge in
the tree by another selected edge outside the tree, subject to requiring that the resulting
subgraph is also a tree. There are actually two types of such edge swaps, one that maintains
the current nodes of the tree unchanged (static) and one that results in replacing a node of the
tree by a new node (dynamic). Figure 2.3 illustrates the best swap of each type that can be
made starting from the greedy solution. The added edge in each case is shown by a heavy line
and the dropped edge is shown by a dotted line.

The best move of both types is the static swap of Figure 2.3, where for our present illustration
we are defining best solely in terms of the change on the objective function value. Since this
best move results in an increase of the total weight of the current solution, the execution of
such move abandons the rules of a descent approach and sets the stage for a tabu search
process. (The feasibility restriction that requires a tree to be produced at each step is
particular to this illustration, since in general the TS methodology may include search
trajectories that violate various types of feasibility conditions.)

Tabu Search 11

Given a move mechanism, such as the swap mechanism we have selected for our example, the
next step is to choose the key attributes that will be used for the tabu classification. Tabu
search is very flexible at this stage of the design. Problem-specific knowledge can be used as
guidance to settle on a particular design. In problems where the moves are defined by adding
and deleting elements, the labels of these elements can be used as the attributes for enforcing
tabu status. Here, in the present example, we can simply refer to the edges as attributes of the
move, since the condition of being in or out of the tree (which is a distinguishing property of the
current solution) may be assumed to always be automatically known by a reasonable solution
representation.

Choosing Tabu Classifications

Tabu classifications do not have to be symmetric, that is, the tabu structure can be designed to
treat added and dropped elements differently. Suppose for example that after choosing the
static swap of Figure 2.3, which adds edge (4,6) and drops edge (4,7), a tabu status is assigned
to both of these edges. Then one possibility is to classify both of these edges tabu-active for the
same number of iterations. The tabu-active status has different meanings depending on
whether the edge is added or dropped. For an added edge, tabu-active means that this edge is
not allowed to be dropped from the current tree for the number of iterations that defines its
tabu tenure. For a dropped edge, on the other hand, tabu-active means the edge is not allowed
to be included in the current solution during its tabu tenure. Since there are many more edges
outside the tree than in the tree, it seems reasonable to implement a tabu structure that keeps
a recently dropped edge tabu-active for a longer period of time than a recently added edge.
Notice also that for this problem the tabu-active period for added edges is bounded by k, since
if no added edge is allowed to be dropped for k iterations, then within k steps all available
moves will be classified tabu.

The concept of creating asymmetric tabu classifications can be readily applied to settings
where add/drop moves are not used.

Fig. 2.3 Swap move types.

3

17

2

1 4 6

7

1

25

8 6

Greedy solution
Total weight: 40

2

1 4 6

7

1

25 15

6

Best static swap
Total weight: 47

2

1 4

7

1

25

8

Best dynamic swap
Total weight: 51

6

68

12 Glover and Laguna

Illustrative Tabu Classifications for the Min k-Tree Problem

As previously remarked, the tabu-active classification may in fact prevent the search from
visiting solutions that have not been examined yet. We illustrate this phenomenon as follows.
Suppose that in the Min k-Tree problem instance of Figure 2.2, dropped edges are kept tabu-
active for 2 iterations, while added edges are kept tabu-active for only one iteration. (The
number of iterations an edge is kept tabu-active is called the tabu tenure of the edge.) Also
assume that we define a swap move to be tabu if either its added or dropped edge is tabu-
active. If we examine the full neighborhood of available edge swaps at each iteration, and
always choose the best that is not tabu, then the first three moves are as shown in Table 2.2
below (starting from the initial solution found by the greedy construction heuristic). The move
of iteration 1 is the static swap move previously identified in Figure 2.3. Diagrams showing the
successive trees generated by these moves, starting with the initial greedy solution, are given in
Figure 2.4.

Table 2.2 TS iterations.

Iteration Tabu-active net tenure Add Drop Weight

 1 2

1 (4,6) (4,7) 47

2 (4,6) (4,7) (6,8) (6,7) 57

3 (6,8), (4,7) (6,7) (8,9) (1,2) 63

The net tenure values of 1 and 2 in Table 2.2 for the currently tabu-active edges indicate the
number of iterations that these edges will remain tabu-active (including the current iteration).

At iteration 2, the reversal of the move of iteration 1 (that is, the move that now adds (4,7) and
drops (4,6)) is clearly tabu, since both of its edges are tabu-active at iteration 2. In addition,
the move that adds (4,7) and drops (6,7) is also classified tabu, because it contains the tabu-

Fig. 2.4 Effects of attributive short term memory.

2

1 4 6

87

9

Iteration: 0 Weight: 40

2

1 4 6

87

9

Iteration: 1 Weight: 47

2

1 4 6

87

9

Iteration: 2 Weight: 57

2

1 4 6

87

9

Iteration: 3 Weight: 63

2

1 4 6

87

9

Tabu Move Weight: 49

TABU

Tabu Search 13

active edge (4,7) (with a net tenure of 2). This move leads to a solution with a total weight of
49, a solution that clearly has not been visited before (see Figure 2.4). The tabu-active
classification of (4,7) has modified the original neighborhood of the solution at iteration 2, and
has forced the search to choose a move with an inferior objective function value (i.e., the one
with a total weight of 57). In this case, excluding the solution with a total weight of 49 has
little effect on the quality of the best solution found (since we have already obtained one with a
weight of 40).

In other situations, however, additional precautions must be taken to avoid missing good
solutions. These strategies are known as aspiration criteria and are the subject of Section 2.6.
For the moment we observe simply that if the tabu solution encountered at the current step
instead had a weight of 39, which is better than the best weight of 40 so far seen, then we
would allow the tabu classification of this solution to be overridden and consider the solution
admissible to be visited. The aspiration criterion that applies in this case is called the
improved-best aspiration criterion. (It is important to keep in mind that aspiration criteria do
not compel particular moves to be selected, but simply make them available, or alternately
rescind evaluation penalties attached to certain tabu classifications.)

One other comment about tabu classification deserves to be made at this point. In our
preceding discussion of the Min k-Tree problem we consider a swap move tabu if either its
added edge or its dropped edge is tabu-active. However, we could instead stipulate that a swap
move is tabu only if both its added and dropped edges are tabu-active. In general, the tabu
status of a move is a function of the tabu-active attributes of the move (i.e., of the new solution
produced by the move).

2.3 A First Level Tabu Search Approach

We now have on hand enough ingredients for a first level tabu search procedure. Such a
procedure is sometimes implemented in an initial phase of a TS development to obtain a
preliminary idea of performance and calibration features, or simply to provide a convenient
staged approach for the purpose of debugging solution software. While this naive form of a TS
method omits a number of important short term memory considerations, and does not yet
incorporate longer term concerns, it nevertheless gives a useful starting point for
demonstrating several basic aspects of tabu search.

We start from the solution with a weight of 63 as shown previously in Figure 2.4 which was
obtained at iteration 3. At each step we select the least weight non-tabu move from those
available, and use the improved-best aspiration criterion to allow a move to be considered
admissible in spite of leading to a tabu solution. The reader may verify that the outcome leads
to the series of solutions shown in Table 2.3, which continues from iteration 3, just executed.
For simplicity, we select an arbitrary stopping rule that ends the search at iteration 10.

14 Glover and Laguna

Table 2.3 Iterations of a first level TS procedure.

Iteration Tabu-active net tenure Add Drop Move Weight

 1 2 Value

3 (6,8), (4,7) (6,7) (8,9) (1,2) 6 63

4 (6,7), (8,9) (1,2) (4,7) (1,4) -17 46

5 (1,2), (4,7) (1,4) (6,7) (4,6) -9 37*

6 (1,4), (6,7) (4,6) (6,9) (6,8) 0 37

7 (4,6), (6,9) (6,8) (8,10) (4,7) 1 38

8 (6,8), (8,10) (4,7) (9,12) (6,7) 3 41

9 (4,7), (9,12) (6,7) (10,11) (6,9) -7 34*

10 (6,7), (10,11) (6,9) (5,9) (9,12) 7 41

The successive solutions identified in Table 2.3 are shown graphically in Figure 2.5 below. In
addition to identifying the dropped edge at each step as a dotted line, we also identify the
dropped edge from the immediately preceding step as a dotted line which is labeled 2*, to
indicate its current net tabu tenure of 2. Similarly, we identify the dropped edge from one
further step back by a dotted line which is labeled 1*, to indicate its current net tabu tenure of
1. Finally, the edge that was added on the immediately preceding step is also labeled 1* to
indicate that it likewise has a current net tabu tenure of 1. Thus the edges that are labeled
with tabu tenures are those which are currently tabu-active, and which are excluded from
being chosen by a move of the current iteration (unless permitted to be chosen by the
aspiration criterion).

As illustrated in Table 2.3 and Figure 2.5 the method continues to generate different solutions,
and over time the best known solution (denoted by an asterisk) progressively improves. In fact,
it can be verified for this simple example that the solution obtained at iteration 9 is optimal.
(In general, of course, there is no known way to verify optimality in polynomial time for difficult
discrete optimization problems, i.e., those that fall in the class called NP-hard. The Min k-Tree
problem is one of these.)

Tabu Search 15

It may be noted that at iteration 6 the method selected a move with a move value of zero.
Nevertheless, the configuration of the current solution changes after the execution of this
move, as illustrated in Figure 2.5.

The selection of moves with certain move values, such as zero move values, may be
strategically controlled, to limit their selection as added insurance against cycling in special
settings. We will soon see how considerations beyond this first level implementation can lead
to an improved search trajectory, but the non-monotonic, gradually improving, behavior is
characteristic of TS in general. Figure 2.6 provides a graphic illustration of this behavior for
the current example.

Fig. 2.5 Graphical representation of TS iterations.

2

1 4 6

87

9

Iteration: 4 Weight: 46

2

1 4 6

87

9

Iteration: 3 Weight: 63

1*
1* 2*

2*

1* 1*

2

1 4 6

87

9

Iteration: 5 Weight: 37

1*

1*

2*

1 4 6

87

9

Iteration: 6 Weight: 37

1*

2*1*

10

4 6

87

9

Iteration: 7 Weight: 38

1*

2*

1*

10

4 6

87

9

Iteration: 8 Weight: 41

2* 1*

12

1*

10

4 6

87

9

Iteration: 9 Weight: 34

1*

1*
12

2*

11

10

4 6

87

9

Iteration: 10 Weight: 41

1* 1*

12

2*
11

5

16 Glover and Laguna

We have purposely chosen the stopping iteration to be small to illustrate an additional relevant
feature, and to give a foundation for considering certain types of longer term considerations.
One natural way to apply TS is to periodically discontinue its progress, particularly if its rate of
finding new best solutions falls below a preferred level, and to restart the method by a process
designated to generate a new sequence of solutions.

Classical restarting procedures based on randomization evidently can be used for this purpose,
but TS often derives an advantage by employing more strategic forms of restarting. We
illustrate a simple instance of such a restarting procedure, which also serves to introduce a
useful memory concept.

2.3.1 Critical Event Memory

Critical Event memory in tabu search, as its name implies, monitors the occurrence of certain
critical events during the search, and establishes a memory that constitutes an aggregate
summary of these events. For our current example, where we seek to generate a new starting
solution, a critical event that is clearly relevant is the generation of the previous starting
solution. Correspondingly, if we apply a restarting procedure multiple times, the steps of
generating all preceding starting solutions naturally qualify as critical events. That is, we
would prefer to depart from these solutions in some significant manner as we generate other
starting solutions.

Different degrees of departure, representing different levels of diversification, can be achieved
by defining solutions that correspond to critical events in different ways (and by activating
critical event memory by different rules). In the present setting we consider it important that
new starting solutions not only differ from preceding starting solutions, but that they also differ
from other solutions generated during previous passes. One possibility is to use a blanket
approach that considers each complete solution previously generated to represent a critical
event. The aggregation of such events by means of critical event memory makes this entirely

Fig. 2.6 TS search trajectory.

30

35

40

45

50

55

60

65

0 1 2 3 4 5 6 7 8 9 10

Iterations

W
ei

gh
t

Current Weight
Best Weight

Tabu Search 17

practicable, but often it is quite sufficient (and, sometimes preferable) to isolate a smaller set of
solutions.

For the current example, therefore, we will specify that the critical events of interest consist of
generating not only the starting solution of the previous pass(es), but also each subsequent
solution that represents a “local TS optimum,” i.e. whose objective function value is better (or
no worse) than that of the solution immediately before and after it. Using this simple definition
we see that four solutions qualify as critical (i.e., are generated by the indicated critical events)
in the first solution pass of our example: the initial solution and the solutions found at
iterations 5, 6 and 9 (with weights of 40, 37, 37 and 34, respectively).

Since the solution at iteration 9 happens to be optimal, we are interested in the effect of
restarting before this solution is found. Assume we had chosen to restart after iteration 7,
without yet reaching an optimal solution. Then the solutions that correspond to critical events
are the initial solution and the solutions of iterations 5 and 6. We treat these three solutions
in aggregate by combining their edges, to create a subgraph that consists of the edges (1,2),
(1,4), (4,7), (6,7), (6,8), (8,9) and (6,9). (Frequency-based memory, as discussed in Section 4,
refines this representation by accounting for the number of times each edge appears in the
critical solutions, and allows the inclusion of additional weighting factors.)

To execute a restarting procedure, we penalize the inclusion of the edges of this subgraph at
various steps of constructing the new solution. It is usually preferable to apply this penalty
process at early steps, implicitly allowing the penalty function to decay rapidly as the number
of steps increases. It is also sometimes useful to allow one or more intervening steps after
applying such penalties before applying them again.

For our illustration, we will use the memory embodied in the subgraph of penalized edges by
introducing a large penalty that effectively excludes all these edges from consideration on the
first two steps of constructing the new solution. Then, because the construction involves four
steps in total, we will not activate the critical event memory on subsequent construction steps,
but will allow the method to proceed in its initial form.

Applying this approach, we restart the method by first choosing edge (3,5), which is the
minimum weight edge not in the penalized subgraph. This choice and the remaining choices
that generate the new starting solution are shown in Table 2.4.

Table 2.4 Restarting procedure.

Step Candidates Selection Total Weight

1 (3,5) (3, 5) 6

2 (2,3), (3,4), (3,6), (5,6), (5,9), (5,12) (5, 9) 22

3 (2,3), (3,4), (3,6), (5,6), (5,12), (6,9), (8,9),

(9,12)

(8, 9) 29

4 (2,3), (3,4), (3,6), (5,6), (5,12), (6,8), (6,9),

(7,8), (8,10), (9,12)

(8, 10) 38

Beginning from the solution constructed in Table 2.4, and applying the first level TS procedure
exactly as it was applied on the first pass, generates the sequence of solutions shown in Table

18 Glover and Laguna

2.5 and depicted in Figure 2.7. (Again, we have arbitrarily limited the total number of
iterations, in this case to 5.)

Table 2.5 TS iterations following restarting.

Iteration Tabu-active net tenure Add Drop Move Weight

 1 2 Value

1 (9,12) (3,5) 3 41

2 (9,12) (3,5) (10,11) (5,9) -7 34*

3 (3,5), (10,11) (5,9) (6,8) (9,12) 7 41

4 (5,9), (6,8) (9,12) (6,7) (10,11) -3 38

5 (9,12), (6,7) (10,11) (4,7) (8,10) -1 37

It is interesting to note that the restarting procedure generates a better solution (with a total
weight of 38) than the initial solution generated during the first construction (with a total
weight of 40). Also, the restarting solution contains 2 “optimal edges” (i.e., edges that appear
in the optimal tree). This starting solution allows the search trajectory to find the optimal
solution in only two iterations, illustrating the benefits of applying an critical event memory
within a restarting strategy. As will be seen in Section 4, related memory structures can also
be valuable for strategies that drive the search into new regions by “partial restarting” or by
directly continuing a current trajectory (with modified decision rules).

Now we return from our example to examine elements of TS that take us beyond these first
level concerns, and open up possibilities for creating more powerful solution approaches. We
continue to focus primarily on short term aspects, and begin by discussing how to generalize
the use of recency-based memory when neighborhood exploration is based on add/drop moves.
From these foundations we then discuss issues of logical restructuring, tabu activation rules

Fig. 2.7 Graphical representation of TS iterations after restarting.

10

4 6

87

9

Restarting Point Weight: 38

12

11

5
1*

2*3

Iteration: 1 Weight: 41

10

4 6

87

9

12

11

53

Iteration: 2 Weight: 34

10

4 6

87

9

12

11

53

2*

1*

Iteration: 3 Weight: 41

10

4 6

87

9

12

11

53

1*

1*

1*

Iteration: 4 Weight: 38

10

4 6

87

9

12

11

53

2*

2*1*

Iteration: 5 Weight: 37

10

4 6

87

9

12

11

53

1*

Tabu Search 19

and ways of determining tabu tenure. We then examine the important area of aspiration
criteria, together with the role of influence

2.4 Recency-Based Memory for Add / Drop Moves

To understand procedurally how various forms of recency-based memory work, and to see their
interconnections, it is useful to examine a convenient design for implementing the ideas
illustrated so far. Such a design for the Min k-Tree problem creates a natural basis for
handling a variety of other problems for which add/drop moves are relevant. In addition, the
ideas can be adapted to settings that are quite different from those where add/drop moves are
used.

As a step toward fuller generality, we will refer to items added and dropped as elements, though
we will continue to make explicit reference to edges (as particular types of elements) within the
context of the Min k-Tree problem example. (Elements are related to, but not quite the same
as, solution attributes. The difference will be made apparent shortly.) There are many settings
where operations of adding and dropping paired elements are the cornerstone of useful
neighborhood definitions. For example, many types of exchange or swap moves can be
characterized by such operations. Add/drop moves also apply to the omnipresent class of
multiple choice problems, which require that exactly one element must be chosen from each
member set from a specified disjoint collection. Add/drop moves are quite natural in this
setting, since whenever a new element is chosen from a given set (and hence is “added” to the
current solution), the element previously chosen from that set must be replaced (and hence
“dropped”). Such problems are represented by discrete generalized upper bound (GUB)
formulations in mathematical optimization, where various disjoint sets of 0-1 variables must
sum to 1 (hence exactly one variable from each set must equal 1, and the others must equal 0).
An add/drop move in this formulation consists of choosing a new variable to equal 1 (the “add
move”) and setting the associated (previously selected) variable equal to 0 (the “drop move”).

Add/drop moves further apply to many types of problems that are not strictly discrete, that is,
which contain variables whose values can varying continuously across specified ranges. Such
applications arise by taking advantage of basis exchange (pivoting) procedures, such as the
simplex method of linear programming. In this case, an add/drop move consists of selecting a
new variable to enter (add to) the basis, and identifying an associated variable to leave (drop
from) the basis. A variety of procedures for nonlinear and mixed integer optimization rely on
such moves, and have provided a useful foundation for a number of tabu search applications.
Additional related examples will be encountered throughout the course of this book.

2.4.1. Some Useful Notation

The approach used in the Min k-Tree problem can be conveniently described by means of the
following notation. For a pair of elements that is selected to perform an add/drop move, let
Added denote the element that is added, and Dropped the element that is dropped. Also
denote the current iteration at which this pair is selected by Iter. We maintain a record of Iter
to identify when Added and Dropped start to be tabu-active. Specifically, at this step we set:

 TabuDropStart(Added) = Iter
 TabuAddStart(Dropped) = Iter.

20 Glover and Laguna

Thus, TabuDropStart records the iteration where Added becomes tabu-active (to prevent this
element from later being dropped), and TabuAddStart records the iteration where Dropped
becomes tabu-active (to prevent this element from later being added).

For example, in the Min k-Tree problem illustration of Table 2.3, where the edge (4,6) was
added and the edge (4,7) was dropped on the first iteration, we would establish the record (for
Iter = 1)

 TabuDropStart(4,6) = 1
 TabuAddStart(4,7) = 1

To identify whether or not an element is currently tabu-active, let TabuDropTenure denote the
tabu tenure (number of iterations) to forbid an element to be dropped (once added), and let
TabuAddTenure denote the tabu tenure to forbid an element from being added (once dropped).
(In our Min k-Tree problem example of Section 2.2, we selected TabuAddTenure = 2 and
TabuDropTenure = 1.)

As a point of clarification, when we speak of an element as being tabu-active, our terminology
implicitly treats elements and attributes as if they are the same. However, to be precise, each
element is associated with two different attributes, one where the element belongs to the
current solution and one where the element does not. Elements may be viewed as
corresponding to variables and attributes as corresponding to specific value assignments for
such variables. There is no danger of confusion in the add/drop setting, because we always
know when an element belongs or does not belong to the current solution, and hence we know
which of the two associated attributes is currently being considered.

We can now identify precisely the set of iterations during which an element (i.e., its associated
attribute) will be tabu-active. Let TestAdd and TestDrop denote a candidate pair of elements,
whose members are respectively under consideration to be added and dropped from the
current solution. If TestAdd previously corresponded to an element Dropped that was dropped
from the solution and TestDrop previously corresponded to an element Added that was added
to the solution (not necessarily on the same step), then it is possible that one or both may be
tabu-active and we can check their status as follows. By means of the records established on
earlier iterations, where TestAdd began to be tabu-active at iteration TabuAddStart(TestAdd)
and TestDrop began to be tabu-active at iteration TabuDropStart(TestDrop), we conclude that as
Iter grows the status of these elements will be given by:

 TestAdd is tabu-active when:
 Iter ≤ TabuAddStart(TestAdd) + TabuAddTenure
 TestDrop is tabu-active when:
 Iter ≤ TabuDropStart(TestDrop) + TabuDropTenure

Consider again the Min k-Tree problem illustration of Table 2.3. As previously noted, the move
of Iteration 1 that added edge (4.6) and dropped edge (4,7) was accompanied by setting the
TabuDropStart(4,6) = 1 and TabuAddStart(4,7) = 1, to record the iteration where these two
edges start to be tabu-active (to prevent (4,6) from being dropped and (4,7) from being added).
The edge (4,6) will then remain tabu-active on subsequent iterations, in the role of TestDrop (as
a candidate to be dropped), as long as

 Iter ≤ TabuDropStart(4,6) + TabuDropTenure.

Tabu Search 21

Hence, since we selected TabuDropTenure = 1 (to prevent an added edge from being dropped for
1 iteration), it follows that (4,6) remains tabu-active as long as

 Iter ≤ 2.

Similarly, having selected TabuAddTenure = 2, we see that the edge (4,7) remains tabu-active,
to forbid it from being added back, as long as

 Iter ≤ 3.

An initialization step is needed to be sure that elements that have never been previously added
or dropped from the solutions successively generated will not be considered tabu-active. This
can be done by initially setting TabuAddStart and TabuDropStart equal to a large negative
number for all elements. Then, as Iter begins at 1 and successively increases, the inequalities
that determine the tabu-active status will not be satisfied, and hence will correctly disclose that
an element is not tabu-active, until it becomes one of the elements Added or Dropped.
(Alternately, TabuAddStart and TabuDropStart can be initialized at 0, and the test of whether
an element is tabu-active can be skipped when it has a 0 value in the associated array.)

2.4.2 Streamlining

The preceding ideas can be streamlined to allow a more convenient implementation. First, we
observe that the two arrays, TabuAddStart and TabuDropStart, which we have maintained
separately from each other in to emphasize their different functions, can be combined into a
single array TabuStart. The reason is simply that we can interpret TabuStart(E) to be the same
as TabuDropStart(E) when the element E is in the current solution, and to be the same as
TabuAddStart(E) when E is not in the current solution. (There is no possible overlap between
these two states of E, and hence no danger of using the TabuStart array incorrectly.)
Consequently, from now on, we will let the single array TabuStart take the role of both
TabuAddStart and TabuDropStart. For example, when the move is executed that (respectively)
adds and drops the elements Added and Dropped, the appropriate record consists of setting:

 TabuStart(Added) = Iter
 TabuStart(Dropped) = Iter.

The TabuStart array has an additional function beyond that of monitoring the status of tabu-
active elements. (As shown in Section 4, this array is also useful for determining a type of
frequency measure called a residence frequency.) However, sometimes it is convenient to use a
different array, TabuEnd, to keep track of tabu-active status for recency-based memory, as we
are treating here. Instead of recording when the tabu-active status starts, TabuEnd records
when it ends. Thus, in place of the two assignments to TabuStart shown above, the record
would consist of setting:

 TabuEnd(Added) = Iter + TabuDropTenure
 TabuEnd(Dropped) = Iter + TabuAddTenure.

(The element Added is now available to be dropped, and the element Dropped is now available
to be added.) In conjunction with this, the step that checks for whether a candidate pair of
elements TestAdd and TestDrop are currently tabu-active becomes:

22 Glover and Laguna

 TestAdd is tabu-active when:
 Iter ≤ TabuEnd(TestAdd)
 TestDrop is tabu-active when:
 Iter ≤ TabuEnd(TestDrop).

This is a simpler representation than the one using TabuStart, and so it is appealing when
TabuStart is not also used for additional purposes. (Also, TabuEnd can simply be initialized at
0 rather than at a large negative number.)

As will be discussed more fully in the next section, the values of TabuAddTenure and
TabuDropTenure (which are explicitly referenced in testing tabu-active status with TabuStart,
and implicitly referenced in testing this status with TabuEnd), are often preferably made
variable rather than fixed. The fact that we use different tenures for added and dropped
elements discloses that it can be useful to differentiate the tenures applied to elements of
different classes. This type of differentiation can also be based on historical performance, as
tracked by frequency-based measures. Consequently, tenures may be individually adjusted for
different elements (as well as modified over time). Such adjustment can be quite effective in
some settings (e.g., see Laguna, et al. 1995). These basic considerations can be refined to
create effective implementations and also can be extended to handle additional move
structures, as shown in Glover and Laguna (1997).

2.5 Tabu Tenure

In general, recency-based memory is managed by creating one or several tabu lists, which
record the tabu-active attributes and implicitly or explicitly identify their current status. Tabu
tenure can vary for different types or combinations of attributes, and can also vary over
different intervals of time or stages of the search. This varying tenure makes it possible to
create different kinds of tradeoffs between short term and longer term strategies. It also
provides a dynamic and robust form of search.

The choice of appropriate types of tabu lists depends on the context. Although no single type
of list is uniformly best for all applications, some guidelines can be formulated. If memory
space is sufficient (as it often is) to store one piece of information (e.g., a single integer) for each
solution attribute used to define the tabu activation rule, it is usually advantageous to record
the iteration number that identifies when the tabu-active status of an attribute starts or ends
as illustrated by the add/drop data structure described in Sections 2.3 and 2.4. This typically
makes it possible to test the tabu status of a move in constant time. The necessary memory
space depends on the attributes and neighborhood size, but it does not depend on the tabu
tenure.

Depending on the size of the problem, it may not be feasible to implement the preceding
memory structure in combination with certain types of attributes. In general, storing one piece
of information for each attribute becomes unattractive when the problem size increases or
attribute definition is complex. Sequential and circular tabu lists are used in this case, which
store the identities of each tabu-active attribute, and explicitly (or implicitly, by list position)
record associated tabu tenures.

Effective tabu tenures have been empirically shown to depend on the size of the problem
instance. However, no single rule has been designed to yield an effective tenure for all classes
of problems. This is partly because an appropriate tabu tenure depends on the strength of the
tabu activation rule employed (where more restrictive rules are generally coupled with shorter

Tabu Search 23

tenures). Effective tabu tenures and tabu activation rules can usually be determined quite
easily for a given class of problems by a little experimentation. Tabu tenures that are too small
can be recognized by periodically repeated objective function values or other function
indicators, including those generated by hashing, that suggest the occurrence of cycling.
Tenures that are too large can be recognized by a resulting deterioration in the quality of the
solutions found (within reasonable time periods). Somewhere in between typically exists a
robust range of tenures that provide good performance.

Once a good range of tenure values is located, first level improvements generally result by
selecting different values from this range on different iterations. (A smaller subrange, or even
more than one subrange, may be chosen for this purpose.) Problem structures are sometimes
encountered where performance for some individual fixed tenure values within a range can be
unpredictably worse than for other values in the range, and the identity of the isolated poorer
values can change from problem to problem. However, if the range is selected to be good
overall then a strategy that selects different tenure values from the range on different iterations
typically performs at a level comparable to selecting one of the best values in the range,
regardless of the problem instance.

Short term memory refinements subsequently discussed, and longer term considerations
introduced in later sections, transform the method based on these constructions into one with
considerable power. Still, it occasionally happens that even the initial short term approach by
itself leads to exceptionally high quality solutions. Consequently, some of the TS literature has
restricted itself only to this initial part of the method.

In general, short tabu tenures allow the exploration of solutions “close” to a local optimum,
while long tenures can help to break free from the vicinity of a local optimum. These functions
illustrate a special instance of the notions of intensification and diversification that will be
explored in more detail later. Varying the tabu tenure during the search provides one way to
induce a balance between closely examining one region and moving to different parts of the
solution space.

In situations where a neighborhood may (periodically) become fairly small, or where a tabu
tenure is chosen to be fairly large, it is entirely possible that iterations can occur when all
available moves are classified tabu. In this case an aspiration-by-default is used to allow a
move with a “least tabu” status to be considered admissible. Such situations rarely occur for
most problems, and even random selection is often an acceptable form of aspiration-by-default.
When tabu status is translated into a modified evaluation criterion, by penalties and
inducements, then of course aspiration-by-default is handled automatically, with no need for to
monitor the possibility that all moves are tabu.

There are several ways in which a dynamic tabu tenure can be implemented. These
implementations may be classified into random and systematic dynamic tabu tenures.

2.5.1 Random Dynamic Tenure

Random dynamic tabu tenures are often given one of two forms. Both of these forms use a
tenure range defined by parameters tmin and tmax. The tabu tenure t is randomly selected within
this range, usually following a uniform distribution. In the first case, the chosen tenure is
maintained constant for αtmax iterations, and then a new tenure is selected by the same
process. The second form draws a new t for every attribute that becomes tabu at a given
iteration. The first form requires more bookkeeping than the second one, because one must
remember the last time that the tabu tenure was modified.

24 Glover and Laguna

Either of the two arrays TabuStart or TabuEnd discussed in Section 2.4 can be used to
implement these forms of dynamic tabu tenure. For example, a 2-dimensional array TabuEnd
can be created to control a dynamic recency-based memory for the sequencing problem
introduced at the beginning of this section. As in the case of the Min k-Tree problem, such an
array can be used to record the time (iteration number) at which a particular attribute will be
released from its tabu status. Suppose, for example, that tmin = 5 and tmax = 10 and that swaps
of jobs are used to move from one solution to another in the sequencing problem. Also,
assume that TabuEnd(j,p) refers to the iteration that job j will be released from a tabu
restriction that prevents it from being assigned to position p. Then, if at iteration 30, job 8 in
position 2 is swapped with job 12 in position 25, we will want to make the attribute (8,2) and
(12,25) tabu-active for some number of iterations to prevent a move that will return one or both
of jobs 8 and 12 from re-occupying their preceding positions. If t is assigned a value of 7 from
the range tmin = 5 and tmax = 10, then upon making the swap at iteration 30 we may set
TabuEnd(8,2) = 37 and TabuEnd(12,25) = 37.

This is not the only kind of TabuEnd array that can be used for the sequencing problem, and
we examine other alternatives and their implications in Section 3. Nevertheless, we warn
against a potential danger. An array TabuEnd(i,j) that seeks to prevent jobs i and j from
exchanging positions, without specifying what these positions are, does not truly refer to
attributes of a sequencing solution, and hence entails a risk if used to determine tabu status.
(The pair (i,j) here constitutes an attribute of a move, in a lose sense, but does not serve to
distinguish one solution from another.) Thus, if at iteration 30 we were to set TabuEnd(8,12) =
37, in order to prevent jobs 8 and 12 from exchanging positions until after iteration 37, this
still might not prevent job 8 from returning to position 2 and job 12 from returning to position
25. In fact, a sequence of swaps could be executed that could return to precisely the same
solution visited before swapping jobs 8 and 12.

Evidently, the TabuEnd array can be used by selecting a different t from the interval (tmin, tmax)
at every iteration. As remarked in the case of the Min k-Tree problem, it is also possible to
select t differently for different solution attributes.

2.5.2 Systematic Dynamic Tenure

Dynamic tabu tenures based on a random scheme are attractive for their ease of
implementation. However, relying on randomization may not be the best strategy when specific
information about the context is available. In addition, certain diversity-inducing patterns can
be achieved more effectively by not restricting consideration to random designs. A simple form
of systematic dynamic tabu tenure consists of creating a sequence of tabu search tenure values
in the range defined by tmin and tmax. This sequence is then used, instead of the uniform
distribution, to assign the current tabu tenure value. Suppose it is desired to vary t so that its
value alternately increases and decreases. (Such a pattern induces a form of diversity that will
rarely be achieved randomly.) Then the following sequence can be used for the range defined
above:

{ 5, 8, 6, 9, 7, 10 }.

The sequence may be repeated as many times as necessary until the end of the search, where
additional variation is introduced by progressively shifting and/or reversing the sequence
before repeating it. (In a combined random/systematic approach, the decision of the shift
value and the forward or backward direction can itself be made random.) Another variation is
to retain a selected tenure value from the sequence for a variable number of iterations before

Tabu Search 25

selecting the next value. Different sequences can be created and identified as effective for
particular classes of problems.

The foregoing range of values (from 5 to 10) may seem relatively small. However, some
applications use even smaller ranges, but adaptively, increase and decrease the midpoint of the
range for diversification and intensification purposes. Well designed adaptive systems can
significantly reduce or even eliminate the need to discover a best range of tenures by
preliminary calibration. This is an important area of study.

These basic alternatives typically provide good starting tabu search implementations. In fact,
most initial implementations apply only the simplest versions of these ideas.

2.6 Aspiration Criteria and Regional Dependencies

Aspiration criteria are introduced in tabu search to determine when tabu activation rules can
be overridden, thus removing a tabu classification otherwise applied to a move. (The improved-
best and aspiration-by-default criteria, as previously mentioned, are obvious simple instances.)
The appropriate use of such criteria can be very important for enabling a TS method to achieve
its best performance levels. Early applications employed only a simple type of aspiration
criterion, consisting of removing a tabu classification from a trial move when the move yields a
solution better than the best obtained so far. This criterion remains widely used. However,
other aspiration criteria can prove effective for improving the search.

A basis for one of these criteria arises by introducing the concept of influence, which measures
the degree of change induced in solution structure or feasibility. This notion can be illustrated
for the Min k-Tree problem as follows. Suppose that the current solution includes edges (1,2),
(1,4), (4,7) and (6,7), as illustrated in Figure 2.9, following. A high influence move, that
significantly changes the structure of the current solution, is exemplified by dropping edge (1,2)
and replacing it by edge (6,9). A low influence move, on the other hand, is exemplified by
dropping edge (6,7) and adding edge (4,6). The weight difference of the edges in the high
influence move is 15, while the difference is 9 for the low influence move. However, it is
important to point out that differences on weight or cost are not the only — or even the primary
— basis for distinguishing between moves of high and low influence. In the present example,
the move we identify as a low influence move creates a solution that consists of the same set of
nodes included in the current solution, while the move we identified as a high influence move
includes a new node (number 9) from which new edges can be examined. (These moves
correspond to those labeled static and dynamic in Figure 2.3.)

26 Glover and Laguna

As illustrated here, high influence moves may or may not improve the current solution, though
they are less likely to yield an improvement when the current solution is relatively good. But
high influence moves are important, especially during intervals of breaking away from local
optimality, because a series of moves that is confined to making only small structural change is
unlikely to uncover a chance for significant improvement. Executing the high influence move
in Figure 2.8, for example, allows the search to reach the optimal edges (8,9) and (9,12) in
subsequent iterations. Of course, moves of much greater influence than those shown can be
constructed by considering compound moves. Such considerations are treated in later
sections.

Influence often is associated with the idea of move distance. Although important, move
influence is only one of several elements that commonly underlie the determination of
aspiration criteria. We illustrate a few of these elements in Table 2.6.

Fig. 2.8 Influence level of two moves.

2

1 4

7

6

8

9

12

11

10

3 5

2

1 4

7

6

8

9

12

11

10

3 5 2

1 4

7

6

8

9

12

11

10

3 5

1

25
8 6

1

25
8

15 25
8 6

16

Low Influence High Influence

Tabu Search 27

Table 2.6 Illustrative aspiration criteria.

Aspiration by Description Example

Default If all available moves are classified
tabu, and are not render admissible
by some other aspiration criteria,
then a “least tabu” move is selected.

Revoke the tabu status of all moves with
minimum TabuEnd value.

Objective Global: A move aspiration is satisfied
if the move yields a solution better
than the best obtained so far.

Regional: A move aspiration is
satisfied if the move yields a solution
better than the best found in the
region where the solution lies.

Global: The best total tardiness found so far
is 29. The current sequence is (4, 1, 5, 3, 6,
2) with T = 39. The move value of the tabu
swap (5,2) is −20 . Then, the tabu status of
the swap is revoked and the search moves to
the new best sequence (4, 1, 2, 3, 6, 5) with T
= 19.

Regional: The best sequence found in the
region defined by all sequences (1, 2, 3, *, *, *)
is (1, 2, 3, 6, 4, 5) with T = 31. The current
solution is (1, 4, 3, 2, 6, 5) with T = 23. The
swap (4, 2) with move value of 6 is tabu. The
tabu status is revoked because a new regional
best (1, 2, 3, 4, 6, 5) with T = 29 can be
found.

Search
Direction

An attribute can be added and
dropped from a solution (regardless of
its tabu status), if the direction of the
search (improving or nonimproving)
has not changed.

For the Min k-Tree problem, the edge (11,12)
has been recently dropped in the current
improving phase making its addition a tabu-
active attribute. The improving phase can
continue if edge (11,12) is now added,
therefore its tabu status may be revoked.

Influence The tabu status of a low influence
move may be revoked if a high
influence move has been performed
since establishing the tabu status for
the low influence move.

If the low influence swap (1,4) described in
Table 2.7 is classified tabu, its tabu status
can be revoked after the high influence swap
(4,5) is performed.

Aspirations such as those shown in Table 2.6 can be applied according to two implementation
categories: aspiration by move and aspirations by attribute. A move aspiration, when satisfied,
revokes the move’s tabu classification. An attribute aspiration, when satisfied, revokes the
attribute’s tabu-active status. In the latter case the move may or may not change its tabu
classification, depending on whether the tabu activation rule is triggered by more than one
attribute. For example in our sequencing problem, if the swap of jobs 3 and 6 is forbidden
because a tabu activation rule prevents job 3 from moving at all, then an attribute aspiration
that revokes job 3’s tabu-active status also revokes the move’s tabu classification. However, if
the swap (3,6) is classified tabu because both job 3 and job 6 are not allowed to move, then
revoking job 3’s tabu-active status does not result in overriding the tabu status of the entire
move.

Different variants of the aspiration criteria presented in Table 2.6 are possible. For example,
the regional aspiration by objective can be defined in terms of bounds on the objective function
value. These bounds determine the region being explored, and they are modified to reflect the
discovery of better (or worse) regions. Another possibility is to define regions with respect to
time. For example, one may record the best solution found during the recent past (defined as a
number of iterations) and use this value as the aspiration level.

28 Glover and Laguna

2.7 Concluding Observations for the Min k-Tree Example

Influence of tabu tenures.

The tabu tenures used to illustrate the first level TS approach for the Min k-Tree problem of
course are very small. The risk of using such tenures can be demonstrated in this example
from the fact that changing the weight of edge (3,6) in Figure 2.2 from 20 to 17, will cause the
illustrated TS approach with TabuAddTenure = 2 and TabuDropTenure = 1 to go into a cycle
that will prevent the optimal solution from being found. The intuition that TabuDropTenure
has a stronger influence than the TabuAddTenure for this problem is supported by the fact that
the use of tenures of TabuAddTenure = 1 and TabuDropTenure = 2 in this case will avoid the
cycling problem and allow an optimal solution to be found.

Alternative Neighborhoods

The relevance of considering alternative neighborhoods can be illustrated by reference to the
following observation. For any given set of k+1 nodes, an optimal (min weight) k-tree over these
nodes can always be found by using the greedy constructive procedure illustrated in Table 2.1
to generate a starting solution (restricted to these nodes) or by beginning with an arbitrary tree
on these nodes and performing a succession of static improving moves (which do not change
the node set). The absence of a static improving move signals that no better solution can be
found on this set.

This suggests that tabu search might advantageously be used to guide the search over a “node-
swap” neighborhood instead of an “edge-swap” neighborhood, where each move consists of
adding a non-tree node i and dropping a tree node j, followed by finding a min weight solution
on the resulting node set. (Since the tree node j may not be a leaf node, and the reconnections
may also not make node i a leaf node in the new tree, the possibilities are somewhat different
than making a dynamic move in the edge-swap neighborhood.) The tabu tenures may
reasonably be defined over nodes added and dropped, rather than over edges added and
dropped.

Critical event memory.

The type of critical event memory used in the illustration of restarting the TS approach in
Section 2.3.1 may not be best. Generally it is reasonable to expect that the type of critical
event memory used for restarting should be different from that used to continue the search
from the current solution (when both are applied to drive the search into new regions).
Nevertheless, a form that is popularly used in both situations consists of remembering all
elements contained in solutions previously examined. One reason is that it is actually easier to
maintain such memory than to keep track of elements that only occur in selected solutions.
Also, instead of keeping track only of which elements occur in past solution, critical event
memory is more usually designed to monitor the frequency that elements have appeared in
past solutions. Such considerations are amplified in Section 4.

3. Additional Aspects of Short Term Memory

We began the discussion of short term memory for tabu search by contrasting the TS designs
with those of memoryless strategies such as simple or iterated descent, and by pointing out
how candidate list strategies are especially important for applying TS in the most effective
ways. We now describe types of candidate list strategies that often prove valuable in tabu

Tabu Search 29

search implementations. Then we examine the issues of logical restructuring, which provide
important bridges to longer term considerations.

3.1 Tabu Search and Candidate List Strategies

The aggressive aspect of TS is manifest in choice rules that seek the best available move that
can be determined with an appropriate amount of effort. As addressed in Section 2, the
meaning of best in TS applications is customarily not limited to an objective function
evaluation. Even where the objective function evaluation may appear on the surface to be the
only reasonable criterion to determine the best move, the non-tabu move that yields a
maximum improvement or least deterioration is not always the one that should be chosen.
Rather, as we have noted, the definition of best should consider factors such as move
influence, determined by the search history and the problem context.

For situations where N*(x) is large or its elements are expensive to evaluate, candidate list
strategies are essential to restrict the number of solutions examined on a given iteration. In
many practical settings, TS is used to control a search process that may involve the solution of
relatively complex subproblems by way of linear programming or simulation. Because of the
importance TS attaches to selecting elements judiciously, efficient rules for generating and
evaluating good candidates are critical to the search process. The purpose of these values is to
isolate regions of the neighborhood containing moves with desirable features and to put these
moves on a list of candidates for current examination.

Before describing the kinds of candidate list strategies that are particularly useful in tabu
search implementations, we note that the efficiency of implementing such strategies often can
be enhanced by using relatively straightforward memory structures to give efficient updates of
move evaluations from one iteration to another. Appropriately coordinated, such updates can
appreciably reduce the effort of finding best or near best moves.

In sequencing, for example, the move values often can be calculated without a full evaluation of
the objective function. Intelligent updating can be useful even where candidate list strategies
are not used. However, the inclusion of explicit candidate list strategies, for problems that are
large, can significantly magnify the resulting benefits. Not only search speed but also solution
quality can be influenced by the use of appropriate candidate list strategies. Perhaps
surprisingly, the importance of such approaches is often overlooked.

3.2 Some General Classes of Candidate List Strategies

Candidate lists can be constructed from context related rules and from general strategies. In
this section we focus on rules for constructing candidate lists that are context-independent.
We emphasize that the effectiveness of a candidate list strategy should not be measured in
terms of the reduction of the computational effort in a single iteration. Instead, a preferable
measure of performance for a given candidate list is the quality of the best solution found given
a specified amount of computer time. For example, a candidate list strategy intended to
replace an exhaustive neighborhood examination may result in more iterations per unit of time,
but may require many more iterations to match the solution quality of the original method. If
the quality of the best solution found within a desirable time limit (or across a graduated series
of such limits) does not improve, we conclude that the candidate list strategy is not effective.

30 Glover and Laguna

3.2.1 Aspiration Plus

The Aspiration Plus strategy establishes a threshold for the quality of a move, based on the
history of the search pattern. The procedure operates by examining moves until finding one
that satisfies this threshold. Upon reaching this point, additional moves are examined, equal
in number to the selected value Plus, and the best move overall is selected.

To assure that neither too few nor too many moves are considered, this rule is qualified to
require that at least Min moves and at most Max moves are examined, for chosen values of Min
and Max. The interpretation of Min and Max is as follows. Let First denote the number of
moves examined when the aspiration threshold is first satisfied. Then if Min and Max were not
specified, the total number of moves examined would be First + Plus. However, if First + Plus <
Min, then Min moves are examined while if First + Plus > Max, then Max moves are examined.
(This conditions may be viewed as imposing limits on the move that is “effectively” treated as
the First move. For example, if as many as Max - Plus moves are examined without finding one
that satisfies the aspiration threshold, then First effectively becomes the same as Max - Plus.)

This strategy is graphically represented in Figure 3.1. In this illustration, the fourth move
examined satisfies the aspiration threshold and qualifies as First. The value of Plus has been
selected to be 5, and so 9 moves are examined in total, selecting the best over this interval.
The value of Min, set at 7, indicates that at least 7 moves will be examined even if First is so
small that First + Plus < 7. (In this case, Min is not very restrictive, because it only applies if
First < 2.) Similarly, the value of Max, set at 11, indicates that at most 11 moves will be
examined even if First is so large that First + Plus > 11. (Here, Max is strongly restrictive.) The
sixth move examined is the best found in this illustration.

The “Aspiration” line in this approach is an established threshold that can be dynamically
adjusted during the search. For example, during a sequence of improving moves, the
aspiration may specify that the next move chosen should likewise be improving, at a level
based on other recent moves and the current objective function value. Similarly, the values of
Min and Max can be modified as a function of the number of moves required to meet the
threshold.

Fig. 3.1 Aspiration Plus strategy.

1 2 3 4 5 6 7 8 9 10 11 12

Number of moves examined

M
ov

e
qu

al
ity

Aspiration

Plus

First Min Max

Tabu Search 31

During a nonimproving sequence the aspiration of the Aspiration Plus rule will typically be
lower than during an improving phase, but rise toward the improving level as the sequence
lengthens. The quality of currently examined moves can shift the threshold, as by
encountering moves that significantly surpass or that uniformly fall below the threshold. As an
elementary option, the threshold can simply be a function of the quality of the initial Min moves
examined on the current iteration.

The Aspiration Plus strategy includes several other strategies as special cases. For example, a
first improving strategy results by setting Plus = 0 and directing the aspiration threshold to
accept moves that qualify as improving, while ignoring the values of Min and Max. Then First
corresponds to the first move that improves the current value of the objective, if such a move
can be found. A slightly more advanced strategy can allow Plus to be increased or decreased
according to the variance in the quality of moves encountered from among some initial number
examined. In general, in applying the Aspiration Plus strategy, it is important to assure on
each iteration that new moves are examined which differ from those just reviewed. One way of
achieving this is to create a circular list and start each new iteration where the previous
examination left off.

3.2.2 Elite Candidate List

The Elite Candidate List approach first builds a Master List by examining all (or a relatively
large number of) moves, selecting the k best moves encountered, where k is a parameter of the
process. Then at each subsequent iteration, the current best move from the Master List is
chosen to be executed, continuing until such a move falls below a given quality threshold, or
until a given number of iterations have elapsed. Then a new Master List is constructed and the
process repeats. This strategy is depicted in Figure 3.2, below.

This technique is motivated by the assumption that a good move, if not performed at the
present iteration, will still be a good move for some number of iterations. More precisely, after
an iteration is performed, the nature of a recorded move implicitly may be transformed. The
assumption is that a useful proportion of these transformed moves will inherit attractive
properties from their antecedents.

The evaluation and precise identity of a given move on the list must be appropriately
monitored, since one or both may change as result of executing other moves from the list. For
example, in the Min k-Tree problem the evaluations of many moves can remain unchanged
from one iteration to the next. However, the identity and evaluation of specific moves will
change as a result of deleting and adding particular edges, and these changes should be
accounted for by appropriate updating (applied periodically if not at each iteration). An Elite
Candidate List strategy can be advantageously extended by a variant of the Aspiration Plus
strategy, allowing some additional number of moves outside the Master List to be examined at
each iteration, where those of sufficiently high quality may replace elements of the Master List.

32 Glover and Laguna

3.2.3 Successive Filter Strategy

Moves can often be broken into component operations, and the set of moves examined can be
reduced by restricting consideration to those that yield high quality outcomes for each
operation separately. For example, the choice of an exchange move that includes an “add
component” and a “drop component” may restrict attention only to exchanges created from a
relatively small subset of “best add” and “best drop” components. The gain in efficiency can be
considerable. If there are 100 add possibilities and 100 drop possibilities, the number of
add/drop combinations is 10,000. However, by restricting attention to the 8 best add and drop
moves, considered independently, the number of combinations to examine is only 64. (Values
of 8 and even smaller have been found effective in some practical applications.)

The evaluations of the separate components often will give only approximate information about
their combined evaluation. Nevertheless, if this information is good enough to insure a
significant number of the best complete moves will result by combining these apparently best
components, then the approach can yield quite good outcomes. Improved information may be
obtained by sequential evaluations, as where the evaluation of one component is conditional
upon the prior (restricted) choices of another. Such strategies of subdividing compound moves
into components, and then restricting consideration of complete compound moves only to those
assembled from components that pass selected thresholds of quality, have proved quite
effective in TS methods for partitioning problems and for telecommunication channel balancing
problems.

Conditional uses of component evaluations are also relevant for sequencing problems, where a
measure can be defined to identify preferred attributes using information such as due dates,
processing times, and delay penalties. If swap moves are being used, then some jobs are
generally better candidates than others to move early or later in the sequence. The candidate
list considers those swaps whose composition includes at least one of these preferred
attributes.

In the context of the traveling salesman problem, good solutions are often primarily composed
of edges that are among the 20 to 40 shortest edges meeting one of their endpoints (depending

Fig. 3.2 Elite candidate list strategy.

 Iterations
1 2 3

So
lu

tio
n

qu
al

ity

Threshold

Master List Rebuild

Tabu Search 33

on various factors). Some studies have attempted to limit consideration entirely to tours
constructed from such a collection of edges. The successive filter strategy, by contrast, offers
greater flexibility by organizing moves that do not have to be entirely composed of such special
elements, provided one or more of these elements is incorporated as part of the move. This
approach can be frequently controlled to require little more time than the more restricted
standard approach, while affording a more desirable set of alternatives to consider.

3.2.4 Sequential Fan Candidate List

A type of candidate list that is highly exploitable by parallel processing is the sequential fan
candidate list. The basic idea is to generate some p best alternative moves at a given step, and
then to create a fan of solution streams, one for each alternative. The several best available
moves for each stream are again examined, and only the p best moves overall (where many or
no moves may be contributed by a given stream) provide the p new streams at the next step.

In the setting of tree search methods such a sequential fanning process is sometimes called
beam search. For use in the tabu search framework, TS memory and activation rules can be
carried forward with each stream and hence inherited in the selected continuations. Since a
chosen solution can be assigned to more than one stream, different streams can embody
different missions in TS. Alternatively, when two streams merge into the same solution other
streams may be started by selecting a neighbor adjacent to one of the current streams.

The process is graphically represented in Figure 3.3. Iteration 0 constructs an initial solution
or alternatively may be viewed as the starting point for constructing a solution. That is, the
sequential fan approach can be applied using one type of move to create a set of initial
solutions, and then can continue using another type of move to generate additional solutions.
(We thus allow a “solution” to be a partial solution as well as a complete solution.) The best
moves from this solution are used to generate p streams. Then at every subsequent iteration,
the overall best moves are selected to lead the search to p different solutions. Note that since
more than one move may lead the search to the same solution, more than p moves may be
necessary to continue the exploration of p distinct streams.

A more intensive form of the sequential fan candidate list approach, which is potentially more
powerful but requires more work, is to use the process illustrated in Figure 3.3 as a “look

Fig. 3.3 Sequential fan candidate list.

 Iterations
1 2 3

So
lu

tio
n

qu
al

ity

p streams

0

34 Glover and Laguna

ahead” strategy. In this case a limit is placed on the number of iterations that the streams are
generated beyond iteration 0. Then the best outcome at this limiting iteration is used to
identify a “best current move” (a single first branch) from iteration 0. Upon executing this
move, the step shown as iteration 1 in Figure 3.3 becomes the new iteration 0, that is, iteration
0 always corresponds to the current iteration. Then this solution becomes the source of p new
streams, and the process repeats.

There are a number of possible variants of this sequential fan strategy. For example, instead of
selecting a single best branch at the limiting iteration, the method can select a small number of
best branches, and thus give the method a handful of candidates from which to generate p
streams at the new iteration 0.

The iteration limit that determines depth of the look ahead can be variable, and the value of p
can change at various depths. Also the number of successors of a given solution that are
examined to determine candidates for the p best continuations can be varied as by
progressively reducing this number at greater depths.

The type of staging involved in successive solution runs of each stream may be viewed as a
means of defining levels in the context of the Proximate Optimality Principle commonly
associated with the strategic oscillation component of tabu search. Although we will study this
principle in more detail later, we remark that the sequential fan candidate list has a form that
is conveniently suited to exploit it.

3.2.5 Bounded Change Candidate List

A bounded change candidate list strategy is relevant in situations where an improved solution
can be found by restricting the domain of choices so that no solution component changes by
more than a limited degree on any step. A bound on this degree, expressed by a distance
metric appropriate to the context, is selected large enough to encompass possibilities
considered strategically relevant. The metric may allow large changes along one dimension,
but limit the changes along another so that choices can be reduced and evaluated more
quickly. Such an approach offers particular benefits as part of an intensification strategy
based on decomposition, where the decomposition itself suggests the limits for bounding the
changes considered.

3.3 Connections Between Candidate Lists, Tabu Status and Aspiration Criteria

It is useful to summarize the short term memory considerations embodied in the interaction
between candidate lists, tabu status and aspiration criteria. The operations of these TS short
term elements are shown in Figure 3.4. The representation of penalties in Figure 3.4 either as
“large” or “very small” expresses a thresholding effect: either the tabu status yields a greatly
deteriorated evaluation or else it chiefly serves to break ties among solutions with highest
evaluations. Such an effect of course can be modulated to shift evaluations across levels other
than these extremes. If all moves currently available lead to solutions that are tabu (with
evaluations that normally would exclude them from being selected), the penalties result in
choosing a “least tabu” solution.

The sequence of the tabu test and the aspiration test in Figure 3.4 evidently can be reversed
(that is, by employing the tabu test only if the aspiration threshold is not satisfied). Also, the
tabu evaluation can be modified by creating inducements based on the aspiration level, just as

Tabu Search 35

it is modified by creating penalties based on tabu status. In this sense, aspiration conditions
and tabu conditions can be conceived roughly as “mirror images” of each other.

For convenience Figure 3.4 expresses tabu restrictions solely in terms of penalized evaluations,
although we have seen that tabu status is often permitted to serve as an all-or-none threshold,
without explicit reference to penalties and inducements (by directly excluding tabu options
from being selected, subject to the outcome of aspiration tests). Whether or not modified
evaluations are explicitly used, the selected move may not be the one with the best objective
function value, and consequently the solution with the best objective function value
encountered throughout the search history is recorded separately.

3.4 Logical Restructuring

Logical restructuring is an important element of adaptive memory solution approaches, which
gives a connection between short and long term strategies. Logical restructuring is implicit in
strategic oscillation and path relinking, which we examine in subsequent sections, but its role
and significance in these strategies is often overlooked. By extension, the general usefulness of
logical restructuring is also often not clearly understood. We examine some of its principal

Fig. 3.4 Short term memory operation.

Candidate List Examination
Generate a move from the candidate
list, to create a trial solution x’ from

the current solution x.

Tabu Test
Identify attributes of x that are changed

to create x’. Do these attributes include a
critical set of tabu-active attributes?

Aspiration Test
Does x’ satisfy an

aspiration threshold?

Create Unpenalized
Tabu Evaluation

Attach no penalty (or very small
penalty based on tabu-active attributes).

Choice Update
If tabu evaluation of x’ is the best for

any candidate examined, record this by
an appropriate update.

Create Penalized Tabu Evaluation
Attach a large penalty based on
status of tabu-active attributes

Completion Check
Enough moves

examined?

Execute Chosen Move
Move from x to a best recorded x’.

YesNo

Yes

No

No Yes

36 Glover and Laguna

features before delving into longer term considerations, and show how it can also be relevant
for improving the designs of short term strategies.

Logical restructuring emerges as a way to meet the combined concerns of quality and
influence. Its goal is to exploit the ways in which influence (structural, local and global) can
uncover improved routes to high quality solutions. For this purpose, a critical step is to re-
design standard strategies to endow them with the power to ferret out opportunities otherwise
missed. This step particularly relies on integrating two elements: (1) the identification of
changes that satisfy properties that are essential (and limiting) in order to achieve
improvement, in contrast to changes that simply depart from what has previously been seen;
(2) the use of anticipatory (“means-ends”) analysis to bring about such essential changes.
Within the context of anticipatory analysis, logical restructuring seeks to answer the following
questions: “What conditions assure the existence of a trajectory that will lead to an improved
solution?” and “What intermediate moves can create such conditions?” The “intermediate
moves” of the second question may be generated either by modifying the evaluations used to
select transitions between solutions or by modifying the neighborhood structure that
determines these transitions.

To illustrate the relevant considerations, we return again to the example of the Min k-Tree
problem discussed in previous sections. We replace the previous graph by the one shown in
Figure 3.5, but continue to consider the case of k = 4.

The same rules to execute a first-level tabu search approach as in our earlier illustrations
(including the rules for generating a starting solution) produces a sequence of steps that
quickly reaches the vicinity of the optimal solution, but requires some effort actually find this
solution. In fact, it is readily verified that applying these rules will cause all edges of the
optimal solution except one, edge (10,11), to be contained in the union of the two solutions
obtained on iterations 4 and 5. Yet an optimal solution will not be found until iteration 11.

This delayed process of finding a route to an optimal solution (which can be greatly magnified
for larger or more complex problems) can be substantially accelerated by means of logical
restructuring. More generally, such restructuring can make it possible to uncover fertile
options that can otherwise be missed entirely.

Fig. 3.5 Illustrative Min k-Tree Problem.

1 2 3 4

5 6 7 8

9 10 11 12

31 7 11

25

35

30

12

35

8

22

27

13

15

29

11

11

8

9

30

10

Tabu Search 37

3.4.1 Restructuring by Changing Evaluations and Neighborhoods

The first type of logical restructuring we illustrate makes use both of modified evaluations and
an amended neighborhood structure. As pointed out in Section 2.2 earlier, the swap moves we
have employed for the Min k-Tree problem may be subdivided into two types: static swaps,
which leave the nodes of the current tree unchanged, and dynamic swaps, which replace one of
the nodes currently in the tree with another that is not in the tree. This terminology was
chosen to reflect the effect that each swap type has on the nodes of the tree. Since dynamic
swaps in a sense are more influential, we give them special consideration. We observe that a
dynamic swap can select an edge to be dropped only if it is a terminal edge ⎯ i.e., one that
meets a leaf node of the tree, which is a node that is met by only a single tree edge (the
terminal edge).

Although it is usually advantageous to drop an edge with a relatively large weight, this may not
be possible. Thus, we are prompted to consider an “anticipatory goal” of making moves that
cause more heavily weighted edges to become terminal edges, and hence eligible to be dropped.
By this means, static swaps can be used to set up desirable conditions for dynamic swaps.

The solution obtained at iteration 4 of the process for solving the example problem of Figure
3.5 gives a basis for showing what is involved. We clarify the situation by showing the current
solution at this iteration in Figure 3.6 (without bothering to identify the solutions obtained at
other iterations), where edges contained in the current tree are shown as heavy edges and the
candidate edges to add to the tree are shown as light edges.

The move that changes the tree at iteration 4 to that of iteration 5 — if the rules illustrated in
Section 2 are used — is a dynamic swap that adds edge (8,11) with a weight of 9 and drops
edge (9,10) with a weight of 8. We make use of information contained in this choice to
construct a more powerful move using logical restructuring, as follows.

Having identified (8,11) as a candidate to be added, the associated anticipatory goal is to
identify a static swap that will change a larger weight edge into a terminal edge. Specifically,
the static swap that adds edge (10,11) and drops edge (6,10), with a move value of 3, produces
a terminal edge from the relatively high weight edge (6,11) (which has a weight of 13). Since
the candidate edge (8,11) to be added has a weight of 9, the result of joining the indicated static
swap with the subsequent dynamic swap (that respectively adds and drops (8,11) and (6,11))
will be a net gain. (The static move value of 3 is joined with the dynamic move value of -4,
yielding a result of -1.)

Effectively, such anticipatory analysis leads to a way to extract a fruitful outcome from a
relatively complex set of options by focusing on a simple set of features. It would be possible to

Fig. 3.6 Solution and candidate edges to add to
iteration 4 tree.

5 6 7 8

9 10 11 12

35 27

35 12 11 10

8 15 8

13
9

38 Glover and Laguna

find the same outcome by a more ponderous approach that checks all sequences in which a
dynamic move follows a static move. This requires a great deal of computational effort ⎯ in
fact, considerably more than involved in the approach without logical restructuring that
succeeded in finding an optimal solution at iteration 11 (considering the trade-off between
number of iterations and work per iteration).

By contrast, the use of logical restructuring allows the anticipatory analysis to achieve the
benefits of a more massive exploration of alternatives, but without incurring the burden of
undue computational effort. In this example, the restructuring is accomplished directly as
follows. First, it is only necessary to identify the two best edges to add for a dynamic swap
(independent of matching them with an edge to drop), subject to requiring that these edges
meet different nodes of the tree. (In the tree of iteration 4, seen in Figure 3.6, these two edges
are (8,11) and (8,12).) Then at the next step, during the process of looking at candidate static
swaps, a modified “anticipatory move value” is created for each swap that creates a terminal
edge, by subtracting the weight of this edge from the standard move value.

This gives all that is needed to find (and evaluate) a best “combined move sequence” of the type
we are looking for. In particular, every static move that generates a terminal edge can be
combined with a dynamic move that drops this edge and then adds one of the two “best edges”
identified in first of the two preceding steps. Hence, the restructuring is completed by adding
the anticipatory move value to the weight of one of these two edges (appropriately identified)
thereby determining a best combined move. The illustrated process therefore achieves
restructuring in two ways ⎯ by modifying customary move values and by fusing certain
sequences of moves into a single compound move.

Although this example appears on the surface to be highly problem specific, its basic features
are shared by applications that arise in a variety of problem settings. Later the reader will see
how variants of logical restructuring embodied in this illustration are natural components of
the strategies of path relinking and ejection chain constructions.

3.4.2 Threshold Based Restructuring and Induced Decomposition

The second mode of logical restructuring that we illustrate by reference to the Min k-Tree
problem example is more complex (in the sense of inducing a more radical restructuring), but
relatively easy to sketch and also potentially more powerful.

Consider again the solution produced at iteration 4. This is a local optimum and also the best
solution found up to the current stage of search. We seek to identify a property that will be
satisfied by at least one solution that has a smaller weight than the weight of this solution (41),
and which will impose useful limits on the composition of such a solution. A property that in
fact must be shared by all “better” solutions can be expressed as a threshold involving the
average weight of the tree edges. This average weight must be less than the threshold value of
41/4 (i.e., 10 1/4). Since some of the edges in any improved solution must have weights less
than this threshold, we are motivated to identify such “preferred” edges as a foundation for a
restructured form of the solution approach. In this type of restructuring, we no longer confine
attention to swap moves, but look for ways to link the preferred edges to produce an improved
solution. (Such a restructuring can be based on threshold values derived from multiple
criteria.)

When the indicated strategy is applied to the present example, a large part of the graph is
eliminated, leaving only 3 separate connected components: (a) the edge (2,3), (b) the edge
(9,10), and (c) the three edges (8,11), (8,12) and (11,12). The graph that highlights these

Tabu Search 39

components is shown in Figure 3.7. At this point a natural approach is to link such
components by shortest paths, and then shave off terminal edges if the trees are too large,
before returning to the swapping process. Such an approach will immediately find the optimal
solution that previously was not found until iteration 11.

This second illustrated form of restructuring is a fundamental component of the strategic
oscillation approach which we describe in more detail in the next section. A salient feature of
this type of restructuring is its ability to create an induced decomposition of either the solution
space or the problem space. This outcome, coupled with the goal of effectively joining the
decomposed components to generate additional solution alternatives, is also a basic
characteristic of path relinking, which is also examined in the next section. More particularly,
the special instance of path relinking known as vocabulary building, which focuses on
assembling fragments of solutions into larger units, offers a direct model for generalizing the
“threshold decomposition” strategy illustrated here.

In some applications, specific theorems can be developed about the nature of optimal solutions
and can be used to provide relevant designs for restructuring. The Min k-Tree problem is one
for which such a theorem is available (Glover and Laguna, 1997). Interestingly, the second
form of restructuring we have illustrated, which is quite basic, exploits several aspects of this
theorem ⎯ although without “knowing” what the theorem is. In general, logical restructuring
and the TS strategies such as path relinking and strategic oscillation which embody it, appear
to behave as if they similarly have a capacity to exploit underlying properties of optimal
solutions in broader contexts ⎯ contexts whose features are not sufficiently uniform or easily
characterized to permit the nature of optimal solutions to be expressed in the form of a
theorem.

4. Longer Term Memory

In some applications, the short term TS memory components are sufficient to produce very
high quality solutions. However, in general, TS becomes significantly stronger by including
longer term memory and its associated strategies. In the longer term TS strategies, the
modified neighborhood produced by tabu search may contain solutions not in the original one,
generally consisting of selected elite solutions (high quality local optima) encountered at
various points in the solution process. Such elite solutions typically are identified as elements
of a regional cluster in intensification strategies, and as elements of different clusters in
diversification strategies. In addition, elite solution components, in contrast to the solutions

Fig. 3.7 Threshold generated components.

9 10 11 12

35 27

35 12 11 10

8 15 8

13
9

31 7

25 30 29 3022

11

115 7 8

1 2 43

6

40 Glover and Laguna

themselves, are included among the elements that can be retained and integrated to provide
inputs to the search process.

Perhaps surprisingly, the use of longer term memory does not require long solution runs before
its benefits become visible. Often its improvements begin to be manifest in a relatively modest
length of time, and can allow solution efforts to be terminated somewhat earlier than otherwise
possible, due to finding very high quality solutions within an economical time span. The
fastest methods for some types of routing and scheduling problems, for example, are based on
including longer term TS memory. On the other hand, it is also true that the chance of finding
still better solutions as time grows ⎯ in the case where an optimal solution is not already
found ⎯ is enhanced by using longer term TS memory in addition to short term memory.

4.1 Frequency-Based Approach

Frequency-based memory provides a type of information that complements the information
provided by recency-based memory, broadening the foundation for selecting preferred moves.
Like recency, frequency often is weighted or decomposed into subclasses by taking account of
the dimensions of solution quality and move influence. Also, frequency can be integrated with
recency to provide a composite structure for creating penalties and inducements that modify
move evaluations. (Although recency-based memory is often used in the context of short term
memory, it can also be a foundation of longer term forms of memory.)

For our present purposes, we conceive frequencies to consist of ratios, whose numerators
represent counts expressed in two different measures: a transition measure — the number of
iterations where an attribute changes (enters or leaves) the solutions visited on a particular
trajectory, and a residence measure — the number of iterations where an attribute belongs to
solutions visited on a particular trajectory, or the number of instances where an attribute
belongs to solutions from a particular subset. The denominators generally represent one of
three types of quantities: (1) the total number of occurrences of all events represented by the
numerators (such as the total number of associated iterations), (2) the sum (or average) of the
numerators, and (3) the maximum numerator value. In cases where the numerators represent
weighted counts, some of which may be negative, denominator (3) is expressed as an absolute
value and denominator (2) is expressed as a sum of absolute values (possibly shifted by a small
constant to avoid a zero denominator). The ratios produce transition frequencies that keep
track of how often attributes change, and residence frequencies that keep track of how often
attributes are members of solutions generated. In addition to referring to such frequencies,
thresholds based on the numerators alone can be useful for indicating when phases of greater
diversification are appropriate. (The thresholds for particular attributes can shift after a
diversification phase is executed.)

Residence frequencies and transition frequencies sometimes convey related information, but in
general carry different implications. They are sometimes confused (or treated identically) in the
literature. A noteworthy distinction is that residence measures, by contrast to transition
measures, are not concerned with the characteristics of a particular solution attribute or
whether it is an attribute that changes in moving from one solution to another. For example in
the Min k-Tree problem, a residence measure may count the number of times edge (i,j) was part
of the solution, while a transition measure may count the number of times edge (i,j) was added
to the solution. (More complex joint measures, such as the number of times edge (i,j) was
accompanied in the solution by edge (k,l), or was deleted from the solution in favor of edge (k,l),
can also selectively be generated. Such frequencies relate to the issues of creating more
complex attributes out of simpler ones, and to the strategies of vocabulary building.)

Tabu Search 41

A high residence frequency may indicate that an attribute is highly attractive if the domain
consists of high quality solutions, or may indicate the opposite, if the domain consists of low
quality solutions. On the other hand, a residence frequency that is high (or low) when the
domain is chosen to include both high and low quality solutions may point to an entrenched
(or excluded) attribute that causes the search space to be restricted, and that needs to be
jettisoned (or incorporated) to allow increased diversity. For example, an entrenched attribute
may be a job that is scheduled in the same position during a sequence of iterations that
include both low and high quality objective function evaluations.

As a further useful distinction, a high transition frequency, in contrast to a high residence
frequency, may indicate an associated attribute is a “crack filler,” that shifts in and out of
solutions to perform a fine tuning function. In this context, a transition frequency may be
interpreted as a measure of volatility. For example, the Min k-Tree problem instance in Figure
2.2 of Section 2 contains a number of edges whose weight may give them the role of crack
fillers. Specifically, edges (3,5) and (6,7) both have a weight of 6, which makes them attractive
relative to other edges in the graph. Since these edges are not contained in an optimal
solution, there is some likelihood that they may repeatedly enter and leave the current solution
in a manner to lure the search away from the optimal region. In general, crack fillers are
determined not simply by cost or quality but by structure, as in certain forms of connectivity.
(Hence, for example, the edge (3,5) of Figure 2.2 does not repeatedly enter and leave solutions
in spite of its cost.) Some subset of such elements is also likely to be a part of an optimal
solution. This subset can typically be identified with much less difficulty once other elements
are in place. On the other hand, a solution (full or partial) may contain the “right” crack fillers
but offer little clue as to the identity of the other attributes that will transform the solution into
one that is optimal.

We use a sequencing problem and the Min k-Tree problem as contexts to further illustrate both
residence and transition frequencies. Only numerators are indicated, understanding that
denominators are provided by the conditions (1) to (3) previously defined. The measures are
given in Table 4.1.

Table 4.1. Example of frequency measures.

Problem Residence Measure Transition Measure

Sequencing Number of times job j has
occupied position π(j).

Number of times job i has
exchanged positions with job j.

 Sum of tardiness of job j when
this job occupies position π(j).

Number of times job j has been
moved to an earlier position in the
sequence.

Min k-Tree
Problem

Number of times edge (i, j) has
been part of the current
solution.

Number of times edge (i, j) has
been deleted from the current
solution when edge (k, l) has been
added.

 Sum of total solution weight
when edge (i, j) is part of the
solution.

Number of times edge (i, j) has
been added during improving
moves.

Attributes that have greater frequency measures, just as those that have greater recency
measures (i.e., that occur in solutions or moves closer to the present), can trigger a tabu
activation rule if they are based on consecutive solutions that end with the current solution.

42 Glover and Laguna

However, frequency-based memory often finds its most productive use as part of a longer term
strategy, which employs incentives as well as restrictions to determine which moves are
selected. In such a strategy, tabu activation rules are translated into evaluation penalties, and
incentives become evaluation enhancements, to alter the basis for qualifying moves as
attractive or unattractive.

To illustrate, in a scheduling setting where a swap neighborhood is used, an attribute such as
a job j with a high residence frequency in position π(j) may be assigned a strong incentive
(“profit”) to serve as a swap attribute, thus resulting in the choice of a move that yields a new
sequence π′ with π′(j) ≠ π(j). Such an incentive is particularly relevant in the case where the
TabuEnd value of job j is small compared to the current iteration, since this value (minus the
corresponding tabu tenure) identifies the latest iteration that job j was a swap attribute, and
hence discloses that job j has occupied position π(j) in every solution since.

Frequency-based memory therefore is usually applied by introducing graduated tabu states, as
a foundation for defining penalty and incentive values to modify the evaluation of moves. A
natural connection exists between this approach and the recency-based memory approach that
creates tabu status as an all-or-none condition. If the tenure of an attribute in recency-based
memory is conceived as a conditional threshold for applying a very large penalty, then the tabu
classifications produced by such memory can be interpreted as the result of an evaluation that
becomes strongly inferior when the penalties are activated. Conditional thresholds are also
relevant to determining the values of penalties and incentives in longer term strategies. Most
applications at present, however, use a simple linear multiple of a frequency measure to create
a penalty or incentive term. The multiplier is adjusted to create the right balance between the
incentive or penalty and the cost (or profit) coefficients of the objective function.

4.2 Intensification Strategies

Intensification strategies are based on modifying choice rules to encourage move combinations
and solution features historically found good. They may also initiate a return to attractive
regions to search them more thoroughly. A simple instance of this second type of
intensification strategy is shown in Figure 4.1. The strategy for selecting elite solutions is
italicized in Figure 4.1 due to its importance. Two variants have proved quite successful. One
introduces a diversification measure to assure the solutions recorded differ from each other by
a desired degree, and then erases all short term memory before resuming from the best of the
recorded solutions. A diversification measure may be related to the number of moves that are
necessary to transform one solution into another. Or the measure may be defined
independently from the move mechanism. For example, in sequencing, two solutions may be
considered diverse if the number of swaps needed to move from one to the other is “large.” On
the other hand, the diversification measure may be the number of jobs that occupy a different
position in the two sequences being compared. (This shows that intensification and
diversification often work together, as elaborated in the next section.)

Tabu Search 43

The second variant that has also proved successful, keeps a bounded length sequential list
that adds a new solution at the end only if it is better than any previously seen. The current
last member of the list is always the one chosen (and removed) as a basis for resuming search.
However, TS short term memory that accompanied this solution is also saved, and the first
move also forbids the move previously taken from this solution, so that a new solution path will
be launched.

A third variant of the approach of Figure 4.1 is related to a strategy that resumes the search
from unvisited neighbors of solutions previously generated. Such a strategy keeps track of the
quality of these neighbors to select an elite set, and restricts attention to specific types of
solutions, such as neighbors of local optima or neighbors of solutions visited on steps
immediately before reaching such local optima. This type of “unvisited neighbor” strategy has
been little examined. It is noteworthy, however, that the two variants previously indicated have
provided solutions of remarkably high quality.

Another type of intensification approach is intensification by decomposition, where restrictions
may be imposed on parts of the problem or solution structure in order to generate a form of
decomposition that allows a more concentrated focus on other parts of the structure. A
classical example is provided by the traveling salesman problem, where edges that belong to
the intersection of elite tours may be “locked into” the solution, in order to focus on
manipulating other parts of the tour. The use of intersections is an extreme instance of a more
general strategy for exploiting frequency information, by a process that seeks to identify and
constrain the values of strongly determined and consistent variables. We discuss the
identification and use of such variables in Section 4.4.1.

Intensification by decomposition also encompasses other types of strategic considerations,
basing the decomposition not only on indicators of strength and consistency, but also on
opportunities for particular elements to interact productively. Within the context of a
permutation problem as in scheduling or routing, for example, where solutions may be
depicted as selecting one or more sequences of edges in a graph, a decomposition may be
based on identifying subchains of elite solution, where two or more subchains may be assigned
to a common set if they contain nodes that are “strongly attracted” to be linked with nodes of
other subchains in the set. An edge disjoint collection of subchains can be treated by an
intensification process that operates in parallel on each set, subject to the restriction that the
identity of the endpoints of the subchains will not be altered. As a result of the decomposition,
the best new sets of subchains can be reassembled to create new solutions. Such a process
can be applied to multiple alternative decompositions in broader forms of intensification by
decomposition.

Fig. 4.1 Simple TS intensification approach.

Apply TS short term memory.
Apply an elite selection strategy.
do {
 Choose one of the elite solutions.
 Resume short term memory TS from chosen solution.
 Add new solutions to elite list when applicable.
} while (iterations < limit and list not empty)

44 Glover and Laguna

These ideas are lately finding favor in other procedures, and may provide a bridge for
interesting components of tabu search with components of other methodologies. We address
the connections with these methodologies in Section 5.

4.3 Diversification Strategies

Search methods based on local optimization often rely on diversification strategies to increase
their effectiveness in exploring the solution space defined by a combinatorial optimization
problem. Some of these strategies are designed with the chief purpose of preventing searching
processes from cycling, i.e., from endlessly executing the same sequence of moves (or more
generally, from endlessly and exclusively revisiting the same set of solutions). Others are
introduced to impart additional robustness or vigor to the search. Genetic algorithms use
randomization in component processes such as combining population elements and applying
crossover (as well as occasional mutation), thus providing an approximate diversifying effect.
Simulated annealing likewise incorporates randomization to make diversification a function of
temperature, whose gradual reduction correspondingly diminishes the directional variation in
the objective function trajectory of solutions generated. Diversification in GRASP (Greedy
Randomized Adaptive Search Procedures) is achieved in a certain sense within repeated
construction phases by means of a random sampling over elements that pass a threshold of
attractiveness by a greedy criterion.

In tabu search, diversification is created to some extent by short term memory functions, but is
particularly reinforced by certain forms of longer term memory. TS diversification strategies, as
their name suggests, are designed to drive the search into new regions. Often they are based on
modifying choice rules to bring attributes into the solution that are infrequently used.
Alternatively, they may introduce such attributes by periodically applying methods that
assemble subsets of these attributes into candidate solutions for continuing the search, or by
partially or fully restarting the solution process. Diversification strategies are particularly
helpful when better solutions can be reached only by crossing barriers or “humps” in the
solution space topology.

4.3.1 Modifying Choice Rules

Consider a TS method designed to solve a graph partitioning problem which uses full and
partial swap moves to explore the local neighborhood. The goal of this problem is to partition
the nodes of the graph into two equal subsets so that the sum of the weights of the edges that
join nodes in one subset to nodes in the other subset is minimized. Full swaps exchange two
nodes that lie in two different sets of the partition. Partial swaps transfer a single node from
one set to the other set. Since full swaps do not modify the number of nodes in the two sets of
the partition, they maintain feasibility, while partial swaps do not. Therefore, under
appropriate guidance, one approach to generate diversity is to periodically disallow the use of
non-improving full swaps for a chosen duration (after an initial period where the search “settles
down”). The partial swaps must of course be coordinated to allow feasibility to be recovered
after achieving various degrees of infeasibility. (This relates to the approach of strategic
oscillation, described in Section 4.4.) Implemented appropriately, this strategy has the effect of
intelligently perturbing the current solution, while escaping from a local optimum, to an extent
that the search is directed to a region that is different than the one being currently explored.
The implementation of this strategy as applied to experimental problems has resulted in
significant improvements in problem-solving efficacy.

Tabu Search 45

The incorporation of partial swaps in place of full swaps in the previous example can be
moderated by using the following penalty function:

MoveValue′ = MoveValue + d * Penalty.

This type of penalty approach is commonly used in TS, where the Penalty value is often a
function of frequency measures such as those indicated in Table 4.1, and d is an adjustable
diversification parameter. Larger d values correspond to a desire for more diversification.
(E.g., nodes that change sets more frequently are penalized more heavily to encourage the
choice of moves that incorporate other nodes. Negative penalties, or “inducements,” may also
be used to encourage low frequency elements.) The penalty can be applied to classes of moves
as well as to attributes of moves. Thus, during a phase where full swaps moves are excluded,
all such moves receive a large penalty (with a value of d that is effectively infinite).

In some applications where d is used to inhibit the selection of “feasibility preserving” moves,
the parameter can be viewed as the reciprocal of a Lagrangean multiplier in that “low” values
result in nearly infinite costs for constraint violation, while “high” values allow searching
through infeasible regions. The adjustment of such a parameter can be done in a way to
provide a strategic oscillation around the feasibility boundary, again as discussed in Section
4.4. The parameter can also be used to control the amount of randomization in probabilistic
versions of tabu search.

In TS methods that incorporate the simplex method of linear programming, as in “adjacent
extreme point approaches” for solving certain nonlinear and mixed-integer programming
problems, a diversification phase can be designed based on the number of times variables
become basic. For example, a diversification step can give preference to bringing a nonbasic
variable into the basis that has remained out of the basis for a relatively long period
(cumulatively, or since its most recent inclusion, or a combination of the two). The number of
successive iterations such steps are performed, and the frequency with which they are
initiated, are design considerations of the type that can be addressed, for example, by the
approach of target analysis (see Section 5).

4.3.2 Restarting

Frequency information can be used in different ways to design restarting mechanisms within
tabu search. In a sequencing problem, for example, the overall frequency of jobs occupying
certain positions can be used to bias a construction procedure and generate new restarting
points.

In a TS method for a location/allocation problem, a diversification phase can be developed
using frequency counts on the number of times a depot has changed its status (from open to
closed or vice versa). The diversification phase can be started from the best solution found
during the search. Based on the frequency information, d depots with the lowest counts are
selected and their status is changed. The search starts from the new solution which differs
from the best by exactly d components. To prevent a quick return to the best solution, the
status of the d depots is also recorded in short term memory. (This is another case where
residence frequency measures may provide useful alternatives or supplements to transition
frequency measures.)

Additional forms of memory functions are possible when a restarting mechanism is
implemented. For example, in the location/allocation problem, it is possible to keep track of
recent sets of depots that were selected for diversification and avoid the same selection in the

46 Glover and Laguna

next diversification phase. Similarly, in a sequencing problem, the positions occupied by jobs
in recent starting points can be recorded to avoid future repetition. This may be viewed as a
very simple forms of the critical event memory discussed in Section 2, and more elaborate
forms will often yield greater benefits. The exploitation of such memory is very important in TS
designs that are completely deterministic, since in these cases a given starting point will always
produce the same search path. Experience also shows, however, that uses of TS memory to
guide probabilistic forms of restarting can likewise yield benefits (Rochat and Taillard, 1995;
Fleurent and Glover, 1996; Lokketangen and Glover, 1996).

Before concluding this section, it is appropriate to provide a word of background about the
orientation underlying diversification strategies within the tabu search framework. Often there
appears to be a hidden assumption that diversification is somehow tantamount to
randomization. Certainly the introduction of a random element to achieve a diversifying effect
is a widespread theme among search procedures, and is fundamental to the operation of
simulated annealing and genetic algorithms. From an abstract standpoint, there is clearly
nothing wrong with equating randomization and diversification, but to the extent that diversity
connotes differences among elements of a set, and to the extent that establishing such
differences is relevant to an effective search strategy, then the popular use of randomization is
at best a convenient proxy (and at worst a haphazard substitute) for something quite different.

When randomization is used as part of a restarting mechanism, for example, frequency
information can be employed to approximate probability distributions that bias the
construction process. In this way, randomization is not a “blind” mechanism, but instead it is
guided by search history. We examine inappropriate roles of randomization in Section 4.6,
where we also explore the intensification / diversification distinction more thoroughly.

4.4 Strategic Oscillation

Strategic oscillation is closely linked to the origins of tabu search, and provides a means to
achieve an effective interplay between intensification and diversification over the intermediate
to long term. The recurring usefulness of this approach documented in a variety of studies
warrants a more detailed examination of its characteristics.

Strategic oscillation operates by orienting moves in relation to a critical level, as identified by a
stage of construction or a chosen interval of functional values. Such a critical level or
oscillation boundary often represents a point where the method would normally stop. Instead
of stopping when this boundary is reached, however, the rules for selecting moves are modified,
to permit the region defined by the critical level to be crossed. The approach then proceeds for
a specified depth beyond the oscillation boundary, and turns around. The oscillation boundary
again is approached and crossed, this time from the opposite direction, and the method
proceeds to a new turning point (see Figure 4.2).

Tabu Search 47

The process of repeatedly approaching and crossing the critical level from different directions
creates an oscillatory behavior, which gives the method its name. Control over this behavior is
established by generating modified evaluations and rules of movement, depending on the
region navigated and the direction of search. The possibility of retracing a prior trajectory is
avoided by standard tabu search mechanisms, like those established by recency-based and
frequency-based memory functions.

A simple example of this approach occurs for the multidimensional knapsack problem, where
values of zero-one variables are changed from 0 to 1 until reaching the boundary of feasibility.
The method then continues into the infeasible region using the same type of changes, but with
a modified evaluator. After a selected number of steps, the direction is reversed by choosing
moves that change variables from 1 to 0. Evaluation criteria to drive toward improvement vary
according to whether the movement occurs inside or outside the feasible region (and whether it
is directed toward or away from the boundary), accompanied by associated restrictions on
admissible changes to values of variables. The turnaround towards feasibility can also be
triggered by a maximum infeasibility value, which defines the depth of the oscillation beyond
the critical level (i.e., the feasibility boundary).

A somewhat different type of application occurs for graph theory problems where the critical
level represents a desired form of graph structure, capable of being generated by progressive
additions (or insertions) of basic elements such as nodes, edges, or subgraphs. One type of
strategic oscillation approach for this problem results by a constructive process of introducing
elements until the critical level is reached, and then introducing further elements to cross the
boundary defined by the critical level. The current solution may change its structure once this
boundary is crossed (as where a forest becomes transformed into a graph that contains loops),
and hence a different neighborhood may be required, yielding modified rules for selecting
moves. The rules again change in order to proceed in the opposite direction, removing
elements until again recovering the structure that defines the critical level.

In the Min k-Tree problem, for example, edges can be added beyond the critical level defined by
k. Then a rule to delete edges must be applied. The rule to delete edges will typically be
different in character from the one used for adding (i.e., will not simply be its “inverse”). In this
case, all feasible solutions lie on the oscillation boundary, since any deviation from this level
results in solutions with more or less than k edges.

Fig. 4.2 Strategic oscillation.

 Iterations
1 2 30

Oscillation Boundary

Depth

Le
ve

l o
r F

un
ct

io
na

l V
al

ue

48 Glover and Laguna

Such rule changes are typical features of strategic oscillation, and provide an enhanced
heuristic vitality. The application of different rules may be accompanied by crossing a
boundary to different depths on different sides. An option is to approach and retreat from the
boundary while remaining on a single side, without crossing (i.e., electing a crossing of “zero
depth”).

These examples constitute a constructive/destructive type of strategic oscillation, where
constructive steps “add” elements (or set variables to 1) and destructive steps “drop” elements
(or set variables to 0). (Types of TS memory structures for add / drop moves discussed in
Section 2 are relevant for such procedures.) One-sided oscillations (that remain on a single
side of a critical boundary) are appropriate in a variety of scheduling and graph-related
applications, where constructive processes are traditionally applied. The alternation with
destructive processes that strategically dismantle and then re-build successive trial solutions
affords a potent enhancement of more traditional procedures. In both one-sided and two-sided
oscillation approaches it is frequently important to spend additional search time in regions
close to the critical level, and especially to spend time at the critical level itself. This may be
done by inducing a sequence of tight oscillations about the critical level, as a prelude to each
larger oscillation that proceeds to a greater depth. Alternately, if greater effort is permitted for
evaluating and executing each move, the method may use “exchange moves” (broadly
interpreted) to stay at the critical level for longer periods. In the case of the Min k-Tree
problem, for example, once the oscillation boundary has been reached, the search can stay on
it by performing swap moves (either of nodes or edges). An option is to use such exchange
moves to proceed to a local optimum each time the critical level is reached.

When the level or functional values in Figure 4.2 refer to degrees of feasibility and infeasibility,
a vector-valued function associated with a set of problem constraints can be used to control the
oscillation. In this case, controlling the search by bounding this function can be viewed as
manipulating a parameterization of the selected constraint set. A preferred alternative is often
to make the function a Lagrangean or surrogate constraint penalty function, avoiding vector-
valued functions and allowing tradeoffs between degrees of violation of different component
constraints.

Intensification processes can readily be embedded in strategic oscillation by altering choice
rules to encourage the incorporation of particular attributes ⎯ or at the extreme, by locking
such attributes into the solution for a period. Such processes can be viewed as designs for
exploiting strongly determined and consistent variables. A strongly determined variable is one
that cannot change its value in a given high quality solution without seriously degrading
quality or feasibility, while a consistent variable is one that frequently takes on a specific value
(or a highly restricted range of values) in good solutions. The development of useful measures
of “strength” and “consistency” is critical to exploiting these notions, particularly by
accounting for tradeoffs determined by context. However, straightforward uses of frequency-
based memory for keeping track of consistency, sometimes weighted by elements of quality and
influence, have produced methods with very good performance outcomes.

An example of where these kinds of approaches are also beginning to find favor in other
settings occurs in recently developed variants of genetic algorithms for sequencing problems.
The more venturesome of these approaches are coming to use special forms of “crossover” to
assure offspring will receive attributes shared by good parents, thus incorporating a type of
intensification based on consistency. Extensions of such procedures using TS ideas of
identifying elements that qualify as consistent and strongly determined according to broader
criteria, and making direct use of memory functions to establish this identification, provide an

Tabu Search 49

interesting area for investigation. (Additional links to GA methods, and ways to go beyond
current explorations of such methods, are discussed in Section 5.)

Longer term processes, following the type of progression customarily found beneficial in tabu
search, may explicitly introduce supplemental diversification strategies into the oscillation
pattern. When oscillation is based on constructive and destructive processes, the repeated
application of constructive phases (rather than moving to intermediate levels using destructive
moves) embodies an extreme type of oscillation that is analogous to a restart method. In this
instance the restart point is always the same (i.e., a null state) instead of consisting of different
initial solutions, and hence it is important to use choice rule variations to assure appropriate
diversification.

A connection can also be observed between an extreme version of strategic oscillation ⎯ in this
case a relaxed version ⎯ and the class of procedures known as perturbation approaches. An
example is the subclass known as “large-step simulated annealing” or “large-step Markov
chain” methods (Martin, Otto and Felten, 1991 and 1992; Johnson, 1990; Lourenco and
Zwijnenburg, 1996). Such methods try to drive an SA procedure (or an iterated descent
procedure) out of local optimality by propelling the solution a greater distance than usual from
its current location.

Perturbation methods may be viewed as loosely structured procedures for inducing oscillation,
without reference to intensification and diversification and their associated implementation
strategies. Similarly, perturbation methods are not designed to exploit tradeoffs created by
parametric variations in elements such as different types of infeasibility, measures of
displacement from different sides of boundaries, etc. Nevertheless, at a first level of
approximation, perturbation methods seek goals similar to those pursued by strategic
oscillation.

4.5 Path Relinking

A useful integration of intensification and diversification strategies occurs in the approach
called path relinking. This approach generates new solutions by exploring trajectories that
connect elite solutions ⎯ by starting from one of these solutions, called an initiating solution,
and generating a path in the neighborhood space that leads toward the other solutions, called
guiding solutions. This is accomplished by selecting moves that introduce attributes contained
in the guiding solutions.

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to
incorporate attributes of high quality solutions, by creating inducements to favor these
attributes in the moves selected. However, instead of using an inducement that merely
encourages the inclusion of such attributes, the path relinking approach subordinates all other
considerations to the goal of choosing moves that introduce the attributes of the guiding
solutions, in order to create a “good attribute composition” in the current solution. The
composition at each step is determined by choosing the best move, using customary choice
criteria, from the restricted set of moves that incorporate a maximum number (or a maximum
weighted value) of the attributes of the guiding solutions. As in other applications of TS,
aspiration criteria can override this restriction to allow other moves of particularly high quality
to be considered.

Specifically, upon identifying a collection of one or more elite solutions to guide the path of a
given solution, the attributes of these guiding solutions are assigned preemptive weights as

50 Glover and Laguna

inducements to be selected. Larger weights are assigned to attributes that occur in greater
numbers of the guiding solutions, allowing bias to give increased emphasis to solutions with
higher quality or with special features (e.g., complementing those of the solution that initiated
the new trajectory).

More generally, it is not necessary for an attribute to occur in a guiding solution in order to
have a favored status. In some settings attributes can share degrees of similarity, and in this
case it can be useful to view a solution vector as providing “votes” to favor or discourage
particular attributes. Usually the strongest forms of aspiration criteria are relied upon to
overcome this type of choice rule.

In a given collection of elite solutions, the role of initiating solution and guiding solutions can
be alternated. The distinction between initiating solutions and guiding solutions effectively
vanishes in such cases. For example, a set of current solutions may be generated
simultaneously, extending different paths, and allowing an initiating solution to be replaced (as
a guiding solution for others) whenever its associated current solution satisfies a sufficiently
strong aspiration criterion.

Because their roles are interchangeable, the initiating and guiding solutions are collectively
called reference solutions. These reference solutions can have different interpretations
depending on the solution framework under consideration. Reference points can be created by
any of a number of different heuristics that result in high quality solutions.

An idealized form of such a process is shown in Figure 4.3. The chosen collection of reference
solutions consists of the three members, A, B, and C. Paths are generated by allowing each to
serve as initiating solution, and by allowing either one or both of the other two solutions to
operate as guiding solutions. Intermediate solutions encountered along the paths are not
shown. The representation of the paths as straight lines of course is oversimplified, since
choosing among available moves in a current neighborhood will generally produce a
considerably more complex trajectory. Intensification can be achieved by generating paths
from similar solutions, while diversification is obtained creating paths from dissimilar
solutions. Appropriate aspiration criteria allow deviation from the paths at attractive
neighbors.

As Figure 4.3 indicates, at least one path continuation is allowed beyond each
initiating/guiding solution. Such a continuation can be accomplished by penalizing the
inclusion of attributes dropped during a trajectory, including attributes of guiding solutions
that may be compelled to be dropped in order to continue the path. (An initiating solution may
also be repelled from the guiding solutions by penalizing the inclusion of their attributes from
the outset.) Probabilistic TS variants operate in the path relinking setting, as they do in others,
by translating evaluations for deterministic rules into probabilities of selection, strongly biased
to favor higher evaluations.

Tabu Search 51

Promising regions are searched more thoroughly in path relinking by modifying the weights
attached to attributes of the guiding solutions, and by altering the bias associated with
solution quality and selected solution features. Figure 4.4 depicts the type of variation that
can result, where the point X represents an initiating solution, the points A, B and C represent
guiding solutions, and the dashed, dotted and solid lines are different searching paths. For
appropriate choices of the reference points (and neighborhoods for generating paths from
them), the notion called the Principle of Proximate Optimality (Glover and Laguna, 1997)
suggests that additional elite points are likely to be found in the regions traversed by the paths,
upon launching new searches from high quality points on these paths.

Fig. 4.3 Paths relinking in neighborhood space.

Fig. 4.4 Path relinking by attribute bias.

A

B C

X

C

B

A

52 Glover and Laguna

4.5.1 Roles in Intensification and Diversification

Path relinking, in common with strategic oscillation, gives a natural foundation for developing
intensification and diversification strategies. Intensification strategies in this setting typically
choose reference solutions to be elite solutions that lie in a common region or that share
common features. Similarly, diversification strategies based on path relinking
characteristically select reference solutions that come from different regions or that exhibit
contrasting features. Diversification strategies may also place more emphasis on paths that go
beyond the reference points. Collections of reference points that embody such conditions can
be usefully determined by clustering and conditional analysis methods.

These alternative forms of path relinking also offer a convenient basis for parallel processing,
contributing to the approaches for incorporating intensification and diversification tradeoffs
into the design of parallel solution processes generally.

4.5.2 Incorporating Alternative Neighborhoods

Path relinking strategies in tabu search can occasionally profit by employing different
neighborhoods and attribute definitions than those used by the heuristics for generating the
reference solutions. For example, it is sometimes convenient to use a constructive
neighborhood for path relinking, i.e., one that permits a solution to be built in a sequence of
constructive steps (as in generating a sequence of jobs to be processed on specified machines
using dispatching rules). In this case the initiating solution can be used to give a beginning
partial construction, by specifying particular attributes (such as jobs in particular relative or
absolute sequence positions) as a basis for remaining constructive steps. Similarly, path
relinking can make use of destructive neighborhoods, where an initial solution is “overloaded”
with attributes donated by the guiding solutions, and such attributes are progressively stripped
away or modified until reaching a set with an appropriate composition.

When path relinking is based on constructive neighborhoods, the guiding solution(s) provide
the attribute relationships that give options for subsequent stages of construction. At an
extreme, a full construction can be produced, by making the initiating solution a null solution.
The destructive extreme starts from a “complete set” of solution elements. Constructive and
destructive approaches differ from transition approaches by typically producing only a single
new solution, rather than a sequence of solutions, on each path that leads from the initiating
solution toward the others. In this case the path will never reach the additional solutions
unless a transition neighborhood is used to extend the constructive neighborhood.

Constructive neighborhoods can often be viewed as a special case of feasibility restoring
neighborhoods, since a null or partially constructed solution does not satisfy all conditions to
qualify as feasible. Similarly, destructive neighborhoods can also represent an instance of a
feasibility restoring function, as where an excess of elements may violate explicit problem
constraints. A variety of methods have been devised to restore infeasible solutions to
feasibility, as exemplified by flow augmentation methods in network problems, subtour
elimination methods in traveling salesman and vehicle routing problems, alternating chain
processes in degree-constrained subgraph problems, and value incrementing and decrementing
methods in covering and multidimensional knapsack problems. Using neighborhoods that
permit restricted forms of infeasibilities to be generated, and then using associated
neighborhoods to remove these infeasibilities, provides a form of path relinking with useful
diversification features. Upon further introducing transition neighborhoods, with the ability to
generate successive solutions with changed attribute mixes, the mechanism of path relinking

Tabu Search 53

also gives a way to tunnel through infeasible regions. The following is a summary of the
components of path relinking:

Step 1. Identify the neighborhood structure and associated solution attributes
for path relinking (possibly different from those of other TS strategies
applied to the problem).

Step 2. Select a collection of two or more reference solutions, and identify which

members will serve as the initiating solution and the guiding solution(s).
(Reference solutions can be infeasible, such as “incomplete” or
“overloaded” solution components treated by constructive or destructive
neighborhoods.)

Step 3. Move from the initiating solution toward (or beyond) the guiding

solution(s), generating one or more intermediate solutions as candidates
to initiate subsequent problem solving efforts. (If the first phase of this
step creates an infeasible solution, apply an associated second phase
with a feasibility restoring neighborhood.)

In Section 5 we will see how the path relinking strategy relates to a strategy called scatter
search, which provides additional insights into the nature of both approaches.

4.6 The Intensification / Diversification Distinction

The relevance of the intensification/diversification distinction is supported by the usefulness of
TS strategies that embody these notions. Although both operate in the short term as well as
the long term, we have seen that longer term strategies are generally the ones where these
notions find their greatest application.

In some instances we may conceive of intensification as having the function of an intermediate
term strategy, while diversification applies to considerations that emerge in the longer run.
This view comes from the observation that in human problem solving, once a short term
strategy has exhausted its efficacy, the first (intermediate term) response is often to focus on
the events where the short term approach produced the best outcomes, and to try to capitalize
on elements that may be common to those events. When this intensified focus on such events
likewise begins to lose its power to uncover further improvement, more dramatic departures
from a short term strategy are undertaken. (Psychologists do not usually differentiate between
intermediate and longer term memory, but the fact that memory for intensification and
diversification can benefit from such differentiation suggests that there may be analogous
physical or functional differences in human memory structures.) Over the truly long term,
however, intensification and diversification repeatedly come into play in ways where each
depends on the other, not merely sequentially, but also simultaneously.
There has been some confusion between the terms intensification and diversification, as
applied in tabu search, and the terms exploitation and exploration, as popularized in the
literature of genetic algorithms. The differences between these two sets of notions deserves to
be clarified, because they have substantially different consequences for problem solving.

The exploitation/exploration distinction comes from control theory, where exploitation refers to
following a particular recipe (traditionally memoryless) until it fails to be effective, and
exploration then refers to instituting a series of random changes — typically via multi-armed
bandit schemes — before reverting to the tactical recipe. (The issue of exploitation versus

54 Glover and Laguna

exploration concerns how often and under what circumstances the randomized departures are
launched.)

By contrast, intensification and diversification in tabu search are both processes that take
place when simpler exploitation designs play out and lose their effectiveness — although as we
have noted, the incorporation of memory into search causes intensification and diversification
also to be manifest in varying degrees even in the short range. (Similarly, as we have noted,
intensification and diversification are not opposed notions, for the best form of each contains
aspects of the other, along a spectrum of alternatives.)

Intensification and diversification are likewise different from the control theory notion of
exploration. Diversification, which is sometimes confused with exploration, is not a recourse to
a Game of Chance for shaking up the options invoked, but is a collection of strategies — again
taking advantage of memory — designed to move purposefully rather than randomly into
uncharted territory.

The source of these differences is not hard to understand. Researchers and practitioners in the
area of search methods have had an enduring love affair with randomization, perhaps
influenced by the much publicized Heisenberg Uncertainty Principle in Quantum Mechanics.
Einstein’s belief that God does not roll dice is out of favor, and many find a special
enchantment in miraculous events where blind purposelessness creates useful order. (We are
less often disposed to notice that this way of producing order requires an extravagant use of
time, and that order, once created, is considerably more effective than randomization in
creating still higher order.)

Our “scientific” reports of experiments with nature reflect our fascination with the role of
chance. When apparently chaotic fluctuations are brought under control by random
perturbations, we seize upon the random element as the key, while downplaying the
importance of attendant restrictions on the setting in which randomization operates. The
diligently concealed message is that under appropriate controls, perturbation is effective for
creating desired patterned outcomes — and in fact, if the system and attendant controls are
sufficiently constrained, perturbation works even when random. (Instead of accentuating
differences between workable and unworkable kinds of perturbation, in our quest to mold the
universe to match our mystique we portray the central consideration to be randomization
versus nonrandomization.)

The tabu search orientation evidently contrasts with this perspective. As manifest in the
probabilistic TS variant, elements subjected to random influence are preferably to be strongly
confined, and uses of randomization are preferably to be modulated through well differentiated
probabilities. In short, the situations where randomization finds a place are very highly
structured. From this point of view God may play with dice, but beyond any question the dice
are loaded.

4.7 Some Basic Memory Structures for Longer Term Strategies

To give a foundation for describing fundamental types of memory structures for longer term
strategies, we first briefly review the form of the recency-based memory structure introduced in
Section 2 for handling add/drop moves. However, we slightly change the notation, to provide a
convenient way to refer to a variety of other types of moves.

Tabu Search 55

4.7.1 Conventions

Let S = {1, 2,..., s} denote an index set for a collection of solution attributes. For example, the
indexes i ∈ S may correspond to indexes of zero-one variables xi, or they may be indexes of
edges that may be added to or deleted from a graph, or the job indexes in a production
scheduling problem. More precisely, by the attribute/element distinction discussed in Section
2, the attributes referenced by S in these cases consist of the specific values assigned to the
variables, the specific add/drop states adopted by the edges, or positions occupied by the jobs.
In general, to give a correspondence with developments of Section 3, an index i ∈ S can
summarize more detailed information; e.g., by referring to an ordered pair (j,k) that summarizes
a value assignment xj = k or the assignment of job j to position k, etc. Hence, broadly speaking,
the index i may be viewed as a notational convenience for representing a pair or a vector.

To keep our description at the simplest level, suppose that each i ∈ S corresponds to a 0-1
variable xi. As before, we let Iter denote the counter that identifies the current iteration, which
starts at 0 and increases by 1 each time a move is made.

For recency-based memory, following the approach indicated in Section 2, when a move is
executed that causes a variable xi to change its value, we record TabuStart(i) = Iter immediately
after updating the iteration counter. (This means that if the move has resulted in xi = 1, then
the attribute xi = 0 becomes tabu-active at the iteration TabuStart(i).) Further, we let
TabuTenure(i) denote the number of iterations this attribute will remain tabu-active. Thus, by
our previous design, the recency-based tabu criterion says that the previous value of xi is tabu-
active throughout all iterations such that

TabuStart(i) + TabuTenure(i) ≤ Iter.

Similarly, in correspondence with earlier remarks, the value TabuStart(i) can be set to 0 before
initiating the method, as a convention to indicate no prior history exists. Then we
automatically avoid assigning a tabu-active status to any variable with TabuStart(i) = 0 (since
the starting value for variable xi has not yet been changed).

4.7.2 Frequency-Based Memory

By our foregoing conventions, allowing the set S = {1, …, s} for illustration purposes to refer to
indexes of 0-1 variables xi, we may indicate structures to handle frequency-based memory as
follows.

Transition frequency-based memory is by far the simplest to handle. A transition memory,
Transition(i), to record the number of times xi changes its value, can be maintained simply in
the form of a counter for xi that is incremented at each move where such a change occurs.
Since xi is a zero-one variable, Transition(i) also discloses the number of times xi changes to and
from each of its possible assigned values. In more complex situations, by the conventions
already noted, a matrix memory Transition(j,k) can be used to determine numbers of transitions
involving assignments such as xj = k. Similarly, a matrix memory may be used in the case of
the sequencing problem where both the index of job j and position k may be of interest. In the
context of the Min k-Tree problem, an array dimensioned by the number of edges can maintain
a transition memory to keep track of the number of times that specific edges have been
brought in and out of the solution. A matrix based on the edges can also identify conditional
frequencies. For example, the matrix Transition(j,k) can be used to count the number of times
edge j replaced edge k. It should be kept in mind in using transition frequency memory that
penalties and inducements are often based on relative numbers (rather than absolute

56 Glover and Laguna

numbers) of transitions, hence requiring that recorded transition values are divided by the total
number of iterations (or the total number of transitions). As noted earlier, other options
include dividing by the current maximum transition value. Raising transition values to a
power, as by squaring, is often useful to accentuate the differences in relative frequencies.

Residence memory requires only slightly more effort to maintain than transition memory, by
taking advantage of the recency-based memory stored in TabuStart(i). The following approach
can be used to track the number of solutions in which xi = 1 , thereby allowing the number of
solutions in which xi = 0 to be inferred from this. Start with Residence(i) = 0 for all i. Then,
whenever xi changes from 1 to 0, after updating Iter but before updating TabuStart(i), set

Residence(i) = Residence(i) + Iter - TabuStart(i).

Then, during iterations when xi = 0, Residence(i) correctly stores the number of earlier
solutions in which xi = 1. During iterations when xi = 1, the true value of Residence(i) is the
right hand side of the preceding assignment, however the update only has to be made at the
indicated points when xi changes from 1 to 0. Table 4.2 illustrates how this memory structure
works when used to track the assignments of a variable x during 100 iterations. The variable
is originally assigned to a value of zero by a construction procedure that generates an initial
solution. In iteration 10 a move is made that changes the assignment of x from zero to one,
however the Residence value remains at zero. Residence is updated at iterations 22 and 73,
when moves are made that change the assignment of x from 1 to 0. At iteration 65, for
example, x has received a value of 1 for 27 iterations (i.e., Residence + Iter - TabuStart = 12 +
65 - 50 = 27), while at iteration 90 the count is 35 (i.e., the value of Residence).

As with transition memory, residence memory should be translated into a relative as a basis for
creating penalties and inducements.

The indicated memory structures can readily be applied to multivalued variables (or multistate
attributes) by the extended designs illustrated in Section 3. In addition, the 0-1 format can be
adapted to reference the number of times (and last time) a more general variable changed its
value, which leads to more restrictive tabu conditions and more limiting (“stronger”) uses of
frequency-based memory than by referring separately to each value the variable receives. As in
the case of recency-based memory, the ability to affect larger numbers of alternative moves by
these more aggregated forms of memory can be useful for larger problems, not only for
conserving memory space but also for providing additional control over solutions generated.

4.7.3 Critical Event Memory

Strategic oscillation offers an opportunity to make particular use of both short term and long
term frequency-based memory. To illustrate, let A(Iter) denote a zero-one vector whose jth

Table 4.2 Illustrative residence memory.
Iter Assignment Residence

 0 x = 0 0
 10 x = 1 0
 22 x = 0 22 - 10 = 12
 50 x = 1 12
 73 x = 0 12 + 73 -50 =

35

Tabu Search 57

component has the value 1 if attribute j is present in the current solution and has the value 0
otherwise. The vector A can be treated “as if” it is the same as the solution vector for zero-one
problems, though implicitly it is twice as large, since xj = 0 is a different attribute from xj = 1.
This means that rules for operating on the full A must be reinterpreted for operating on the
condensed form of A. The sum of the A vectors over the most recent t critical events provides a
simple memory that combines recency and frequency considerations. To maintain the sum
requires remembering A(k), for k ranging over the last t iterations. Then the sum vector A* can
be updated quite easily by the incremental calculation

A* = A* + A(Iter) - A(Iter - t + 1).

Associated frequency measures, as noted earlier, may be normalized, in this case for example
by dividing A* by the value of t. A long term form of A* does not require storing the A(k) vectors,
but simply keeps a running sum. A* can also be maintained by exponential smoothing.

Such frequency-based memory is useful in strategic oscillation where critical events are chosen
to be those of generating a complete (feasible) construction, or in general of reaching the
targeted boundary (or a best point within a boundary region). Instead of using a customary
recency-based TS memory at each step of an oscillating pattern, greater flexibility results by
disregarding tabu restrictions until reaching the turning point, where the oscillation process
alters its course to follow a path toward the boundary. At this point, assume a choice rule is
applied to introduce an attribute that was not contained in any recent solution at the critical
level. If this attribute is maintained in the solution by making it tabu to be dropped, then upon
eventually reaching the critical level the solution will be different from any seen over the
horizon of the last t critical events. Thus, instead of updating A* at each step, the updating is
done only for critical level solutions, while simultaneously enhancing the flexibility of making
choices.

In general, the possibility occurs that no attribute exists that allows this process to be
implemented in the form stated. That is, every attribute may already have a positive associated
entry in A*. Thus, at the turn around point, the rule instead is to choose a move that
introduces attributes which are least frequently used. (Note, “infrequently used” can mean
either “infrequently present” or “infrequently absent,” depending upon the current direction of
oscillation.) This again can be managed conveniently by using penalties and inducements.
Such an approach has been found very effective for multidimensional knapsack problems and
0-1 quadratic optimization problems in Glover and Kochenberger (1996) and Glover,
Kochenberger and Alidaee (1998).

For greater diversification, this rule can be applied for r steps after reaching the turn around
point. Normally r should be a small number, e.g., with a baseline value of 1 or 2, which is
periodically increased in a standard diversification pattern. Shifting from a short term A* to a
long term A* creates a global diversification effect. A template for this approach is given in
Figure 4.5.

The approach of Figure 4.5 is not symmetric. An alternative form of control is to seek
immediately to introduce a low frequency attribute upon leaving the critical level, to increase
the likelihood that the solution at the next turn around will not duplicate a solution previously
visited at that point. Such a control enhances diversity, though duplication at the turn around
will already be inhibited by starting from different solutions at the critical level.

58 Glover and Laguna

5. Connections, Hybrid Approaches and Learning

Relationships between tabu search and other procedures like simulated annealing and genetic
algorithms provide a basis for understanding similarities and contrasts in their philosophies,
and for creating potentially useful hybrid combinations of these approaches. We offer some
speculation on preferable directions in this regard, and also suggest how elements of tabu
search can add a useful dimension to neural network approaches.

From the standpoint of evolutionary strategies, we trace connections between population based
models for combining solutions, as in genetic algorithms, and ideas that emerged from
surrogate constraint approaches for exploiting optimization problems by combining
constraints. We show how this provides the foundation for methods that give additional
alternatives to genetic-based frameworks, specifically as embodied in the scatter search
approach, which is the “primal complement” to the dual strategy of surrogate constraint
approaches. Recent successes by integrating scatter search (and its path relinking extensions)
with tabu search disclose potential advantages for evolutionary strategies that incorporate
adaptive memory.

Finally, we describe the learning approach called target analysis, which provides a way to
determine decision parameters for deterministic and probabilistic strategies — and thus affords
an opportunity to create enhanced solution methods.

5.1 Simulated Annealing

The contrasts between simulated annealing and tabu search are fairly conspicuous, though
undoubtedly the most prominent is the focus on exploiting memory in tabu search that is
absent from simulated annealing. The introduction of this focus entails associated differences
in search mechanisms, and in the elements on which they operate. Accompanying the

Fig. 4.5 Strategic oscillation illustrative memory.

* For selected part of critical level iterations: e.g., for first and best solutions of
current block

Critical Level

Update critical attribute frequencies *
(short and long term)

Maintain level for s iterations

Turn Around Point

Favor (the inclusion of) low frequency
critical attributes for first “small r” steps of

the following “Advance.”

Advance

Low frequency attributes
added during first “small r”

steps are Tabu to drop.

Retreat

(In chosen direction)
Constructive or
Destructive, etc.

Tabu Search 59

differences directly attributable to the focus on memory, and also magnifying them, several
additional elements are fundamental for understanding the relationship between the methods.
We consider three such elements in order of increasing importance.

First, tabu search emphasizes scouting successive neighborhoods to identify moves of high
quality, as by candidate list approaches of the form described in Section 3. This contrasts with
the simulated annealing approach of randomly sampling among these moves to apply an
acceptance criterion that disregards the quality of other moves available. (Such an acceptance
criterion provides the sole basis for sorting the moves selected in the SA method.) The
relevance of this difference in orientation is accentuated for tabu search, since its
neighborhoods include linkages based on history, and therefore yield access to information for
selecting moves that is not available in neighborhoods of the type used in simulated annealing.

Next, tabu search evaluates the relative attractiveness of moves not only in relation to objective
function change, but in relation to additional factors that represent quality, which are balanced
over time with factors that represent influence. Both types of measures are affected by the
differentiation among move attributes, as embodied in tabu activation rules and aspiration
criteria, and in turn by relationships manifested in recency, frequency, and sequential
interdependence (hence, again, involving recourse to memory). Other aspects of the state of
search also affect these measures, as reflected in the altered evaluations of strategic oscillation,
which depend on the direction of the current trajectory and the region visited.

Finally TS emphasizes guiding the search by reference to multiple thresholds, reflected in the
tenures for tabu-active attributes and in the conditional stipulations of aspiration criteria.
This may be contrasted to the simulated annealing reliance on guiding the search by reference
to the single threshold implicit in the temperature parameter. The treatment of thresholds by
the two methods compounds this difference between them. Tabu search varies its thresholds
nonmonotonically, reflecting the conception that multidirectional parameter changes are
essential to adapt to different conditions, and to provide a basis for locating alternatives that
might otherwise be missed. This contrasts with the simulated annealing philosophy of
adhering to a temperature parameter that only changes monotonically.

Hybrids are now emerging that are taking preliminary steps to bridge some of these differences,
particularly in the realm of transcending the simulated annealing reliance on a monotonic
temperature parameter. A hybrid method that allows temperature to be strategically
manipulated, rather than progressively diminished, has been shown to yield improved
performance over standard SA approaches. A hybrid method that expands the SA basis for
move evaluations also has been found to perform better than standard simulated annealing.
Consideration of these findings invites the question of whether removing the memory
scaffolding of tabu search and retaining its other features may yield a viable method in its own
right. For example, experience cited in some of the studies reported in Glover and Laguna
(1997) suggests that, while a memoryless version of tabu search called tabu thresholding can
outperform a variety of alternative heuristics, it generally does not match the performance of
TS methods that appropriately exploit memory.

5.2 Genetic Algorithms

Genetic algorithms offer a somewhat different set of comparisons and contrasts with tabu
search. GAs are based on selecting subsets (traditionally pairs) of solutions from a population,
called parents, and combining them to produce new solutions called children. Rules of
combination to yield children are based on the genetic notion of crossover, which in the

60 Glover and Laguna

classical form consists of interchanging solution values of particular variables, together with
occasional operations such as random value changes. Children that pass a survivability test,
probabilistically biased to favor those of superior quality, are then available to be chosen as
parents of the next generation. The choice of parents to be matched in each generation is
based on random or biased random sampling from the population (in some parallel versions
executed over separate subpopulations whose best members are periodically exchanged or
shared). Genetic terminology customarily refers to solutions as chromosomes, variables as
genes, and values of variables as alleles.

By means of coding conventions, the genes of genetic algorithms may be compared to
attributes in tabu search. Introducing memory in GAs to track the history of genes and their
alleles over subpopulations would provide an immediate and natural way to create a hybrid
with TS.

Some important differences between genes and attributes are worth noting, however. The
implicit differentiation of attributes into from and to components, each having different memory
functions, does not have a counterpart in genetic algorithms. A from attribute is one that is
part of the current solution but is not included in the next solution once a move is made. A to
attribute is one that is not part of the current solution but becomes part of the next solution
once a move is made. The lack of this type of differentiation in GAs results because these
approaches are organized to operate without reference to moves (although, strictly speaking,
combination by crossover can be viewed as a special type of move

A contrast to be noted between genetic algorithms and tabu search arises in the treatment of
context, i.e., in the consideration given to structure inherent in different problem classes. For
tabu search, context is fundamental, embodied in the interplay of attribute definitions and the
determination of move neighborhoods, and in the choice of conditions to define tabu
restrictions. Context is also implicit in the identification of amended evaluations created in
association with longer term memory, and in the regionally dependent neighborhoods and
evaluations of strategic oscillation.

At the opposite end of the spectrum, GA literature has traditionally stressed the freedom of its
rules from the influence of context. Crossover, in particular, is supposedly a context neutral
operation, which assumes no reliance on conditions that solutions must obey in a particular
problem setting, just as genes make no reference to the environment as they follow their
instructions for recombination (except, perhaps, in the case of mutation). Practical application,
however, generally renders this an inconvenient assumption, making solutions of interest
difficult to find. Consequently, a good deal of effort in GA implementation is devoted to
developing “special crossover” operations that compensate for the difficulties created by
context, effectively reintroducing it on a case by case basis.

The chief method by which modern genetic algorithms handle structure is by relegating its
treatment to some other method. For example, genetic algorithms combine solutions by their
parent-children processes at one level, and then a descent method may be introduced to
operate on the resulting solutions to produce new solutions. These new solutions in turn are
submitted to be recombined by the GA processes. In these versions, genetic algorithms already
take the form of hybrid methods. Hence there is a natural basis for marrying GA and TS
procedures in such approaches. But genetic algorithms and tabu search also can be joined in
a more fundamental way.

Specifically, tabu search strategies for intensification and diversification are based on the
following question: how can information be extracted from a set of good solutions to help

Tabu Search 61

uncover additional (and better) solutions? From one point of view, GAs provide an approach
for answering this question, consisting of putting solutions together and interchanging
components (in some loosely defined sense, if traditional crossover is not strictly enforced).
Tabu search, by contrast, seeks an answer by utilizing processes that specifically incorporate
neighborhood structures into their design.

Augmented by historical information, neighborhood structures are used as a basis for applying
penalties and incentives to induce attributes of good solutions to become incorporated into
current solutions. Consequently, although it may be meaningless to interchange or otherwise
incorporate a set of attributes from one solution into another in a wholesale fashion, as
attempted in traditional GA recombination operations, a stepwise approach to this goal
through the use of neighborhood structures is entirely practicable. This observation provides a
motive for creating structured combinations of solutions that embody desired characteristics
such as feasibility — as is automatically achieved by the TS approach of path relinking
discussed in Section 4. Instead of being compelled to create new types of crossover to remove
deficiencies of standard operators upon being confronted by changing contexts, this approach
addresses context directly and makes it an essential part of the design for generating
combinations.

The current trend of genetic algorithms seems to be increasingly compatible with this
perspective, and could provide a basis for a useful hybrid combination of genetic algorithm and
tabu search ideas. However, a fundamental question emerges, as posed in the development of
the next sections, about whether there is any advantage to introducing genetic crossover-based
ideas over introducing the apparently more flexible and exploitable path relinking ideas.

9.2.1 Models of Nature — Beyond “Genetic Metaphors”

An aspect of tabu search that is often misunderstood concerns the relation between a subset of
its strategies and certain approaches embodied in genetic algorithms. TS researchers have
tended sometimes to overlook the part of the adaptive memory focus that is associated with
strategies for combining sets of elite solutions. Complementing this, GA researchers have been
largely unaware that such a collection of strategies outside their domain exists. This has quite
possibly been due to the influence of the genetic metaphor, which on the one hand has helped
to launch a number of useful problem solving ideas, and on the other hand has also sometimes
obscured fertile connections to ideas that come from different foundations.

To understand the relevant ties, it is useful to go back in time to examine the origins of the GA
framework and of an associated set of notions that became embodied in TS strategies. We will
first sketch the original genetic algorithm design (see Figure 5.2), as characterized in Holland
(1975). Our description is purposely somewhat loose, to be able to include approaches more
general than the specific proposals that accompanied the introduction of GAs. Many variations
and changes have come about over the years, as we subsequently observe.

62 Glover and Laguna

A somewhat different model for combining elements of a population comes from a class of
relaxation strategies in mathematical optimization known as surrogate constraint methods
(Glover, 1965). The goal of these approaches is to generate new constraints that capture
information not contained in the original problem constraints taken independently, but which
is implied by their union. We will see that some unexpected connections emerge between this
development and that of genetic algorithms.

The information-capturing focus of the surrogate constraint framework has the aim of
developing improved methods for solving difficult optimization problems by means of (a)
providing better criteria for choice rules to guide a search for improved solutions, (b) inferring
new bounds (constraints with special structures) to limit the space of solutions examined. (The
basic framework and strategies for exploiting it are given in Glover (1965, 1968, 1975b),
Greenberg and Pierskalla (1970, 1973), Karwan and Rardin (1976, 1979), and Freville and
Plateau (1986, 1993).) Based on these objectives, the generation of new constraints proceeds
as indicated in Figure 5.3.

Fig. 5.2 Genetic algorithm template.

1) Begin with a population of binary vectors.

2) Operate repeatedly on the current generation of vectors,

for a selected number of steps, choosing two “parent
vectors” at random. Then mate the parents by exchanging
certain of their components to produce offspring. (The
exchange, called “crossover,” was originally designed to
reflect the process by which chromosomes exchange
components in genetic mating and, in common with the
step of selecting parents themselves, was organized to rely
heavily on randomization. In addition, a “mutation”
operation is occasionally allowed to flip bits at random.)

3) Apply a measure of fitness to decide which offspring

survive to become parents for the next generation. When
the selected number of matings has been performed for
the current generation, return to the start of Step 2 to
initiate the mating of the resulting new set of parents.

4) Carry out the mating-and-survival operation of Steps 2

and 3 until the population becomes stable or until a
chosen number of iterations has elapsed.

Tabu Search 63

A natural first impression is that the surrogate constraint design is quite unrelated to the GA
design, stemming from the fact that the concept of combining constraints seems inherently
different from the concept of combining vectors. However in many types of problem
formulations, including those where surrogate constraints were first introduced, constraints
are summarized by vectors. More particularly, over time, as the surrogate constraint approach
became embedded in both exact and heuristic methods, variations led to the creation of a
“primal counterpart” called scatter search. The scatter search approach combines solution
vectors by rules patterned after those that govern the generation of new constraints, and
specifically inherits the strategy of exploiting linear combinations and inference (Glover, 1977).

5.3 Scatter Search

The scatter search process, building on the principles that underlie the surrogate constraint
design, is organized to (1) capture information not contained separately in the original vectors,

Fig. 5.3 Surrogate constraint template.

1) Begin with an initial set of problem constraints (chosen to

characterize all or a special part of the feasible region for the
problem considered).

2) Create a measure of the relative influence of the constraints

as basis for combining subsets to generate new constraints.
The new (surrogate) constraints, are created from
nonnegative linear combinations of other constraints,
together with cutting planes inferred from such
combinations. (The goal is to determine surrogate
constraints that are most effective for guiding the solution
process.)

3) Change the way the constraints are combined, based on the

problem constraints that are not satisfied by trial solutions
generated relative to the surrogate constraints, accounting
for the degree to which different source constraints are
violated. Then process the resulting new surrogate
constraints to introduce additional inferred constraints
obtained from bounds and cutting planes. (Weaker
surrogate constraints and source constraints that are
determined to be redundant are discarded.)

4) Change the way the constraints are combined, based on the

problem constraints that are not satisfied by trial solutions
generated relative to the surrogate constraints, accounting
for the degree to which different source constraints are
violated. Then process the resulting new surrogate
constraints to introduce additional inferred constraints
obtained from bounds and cutting planes. (Weaker
surrogate constraints and source constraints that are
determined to be redundant are discarded.)

64 Glover and Laguna

(2) take advantage of auxiliary heuristic solution methods to evaluate the combinations
produced and to generate new vectors.

The original form of scatter search may be sketched as in Figure 5.4.

Three particular features of scatter search deserve mention. First, the linear combinations are
structured according to the goal of generating weighted centers of selected subregions, allowing
for nonconvex combinations that project these centers into regions external to the original
reference solutions. The dispersion pattern created by such centers and their external
projections is particularly useful for mixed integer optimization. Second, the strategies for
selecting particular subsets of solutions to combine in Step 2 are designed to make use of
clustering, which allows different types of strategic variation by generating new solutions
“within clusters” and “across clusters”. Third, the method is organized to use supporting
heuristics that are able to start from infeasible solutions, and hence which remove the
restriction that solutions selected as starting points for re-applying the heuristic processes
must be feasible. In sum, scatter search is founded on the following premises.

(P1) Useful information about the form (or location) of optimal solutions is
typically contained in a suitably diverse collection of elite solutions.

(P2) When solutions are combined as a strategy for exploiting such information,
it is important to provide for combinations that can extrapolate beyond the
regions spanned by the solutions considered, and further to incorporate
heuristic processes to map combined solutions into new points. (This
serves to provide both diversity and quality.)

(P3) Taking account of multiple solutions simultaneously, as a foundation for
creating combinations, enhances the opportunity to exploit information
contained in the union of elite solutions.

Fig. 5.4 Scatter search procedure.

1) Generate a starting set of solution vectors by heuristic

processes designed for the problem considered, and
designate a subset of the best vectors to be reference
solutions. (Subsequent iterations of this step, transferring
from Step 3 below, incorporate advanced starting
solutions and best solutions from previous history as
candidates for the reference solutions.)

2) Create new points consisting of linear combinations of
subsets of the current reference solutions. The linear
combinations are:

 (a) chosen to produce points both inside and outside the
convex regions spanned by the reference solutions.

 (b) modified by generalized rounding processes to yield
integer values for integer-constrained vector
components.

3) Extract a collection of the best solutions generated in
Step 2 to be used as starting points for a new application
of the heuristic processes of Step 1. Repeat these steps
until reaching a specified iteration limit.

Tabu Search 65

The fact that the heuristic processes of scatter search are not restricted to a single uniform
design, but represent a varied collection of procedures, affords additional strategic possibilities.
This theme also shares a link with the original surrogate constraint proposal, where heuristics
for surrogate relaxations are introduced to improve the application of exact solution methods. In
combination, the heuristics are used to generate strengthened surrogate constraints and,
iteratively applied, to generate trial solutions for integer programming problems.

The catalog in Figure 5.5 traces the links between the conceptions underlying scatter search
and conceptions that have been introduced over time as amendments to the GA framework.

These innovations in the GA domain, which have subsequently been incorporated in a wide
range of studies, are variously considered to be advances or heresies according to whether they
are viewed from liberal or traditional perspectives. Significantly, their origins are somewhat
diffuse, rather than integrated within a single framework.

It is clear that a number of the elements of the scatter search approach remain outside of the
changes brought about by these proposals. A simple example is the approach of introducing
adaptive rounding processes for mapping fractional components into integers. There also has
conspicuously been no GA counterpart to the use of clustering to create strategic groupings of

Fig. 5.5 Scatter search features (1977) incorporated into non-
traditional GA approaches.

• Introduction of “flexible crossover operations.” (Scatter

search combinations include all possibilities generated by
the early GA crossover operations, and also include all
possibilities embedded in the more advanced “uniform” and
“Bernoulli” crossovers (Ackley (1987), Spears and DeJong
(1991)). Path relinking descendants of scatter search
provide further possibilities, noted subsequently.)

• Use of heuristic methods to improve solutions generated

from processes for combining vectors (Muhlenbein et al.
(1988), Ulder et al. (1991)), (Whitley, Gordon and Mathias
(1994)).

• Exploitation of vector representations that are not restricted

to binary representations (Davis (1989), Eschelman and
Schaffer (1992)).

• Introduction of special cases of linear combinations for

operating on continuous vectors (Davis (1989), Wright
(1990), Bäck et al. (1991), Michalewicz and Janikow (1991)).

• Use of combinations of more than two parents

simultaneously to produce offspring (Eiben et al. (1994),
Mühlenbein and Voight (1996)).

• Introduction of strategies that subdivide the population into

different groupings (Mühlenbein and Schlierkamp-Voosen
(1994)).

66 Glover and Laguna

points, nor (as a result) to the notion of combining points according to distinctions between
membership in different clusters. (The closest approximation to this has been the use of
“island populations” that evolve separately, but without concern for analyzing or subdividing
populations based on inference and clustering.)

The most important distinction, however, is the link between scatter search and the theme of
exploiting history. The prescriptions for combining solutions within scatter search are part of a
larger design for taking advantage of information about characteristics of previously generated
solutions to guide current search. In retrospect, it is perhaps not surprising that such a
design should share an intimate association with the surrogate constraint framework, with its
emphasis on extracting and coordinating information across different solution phases. This
orientation, which takes account of elements such as the recency, frequency and quality of
particular value assignments, clearly shares a common foundation with notions incorporated
within tabu search. (The same reference on surrogate constraint strategies that is the starting
point for scatter search is also often cited as a source of early TS conceptions.) By this means,
the link between tabu search and so-called “evolutionary” approaches also becomes apparent.
The term evolutionary has undergone an interesting evolution of its own. By a novel turn, the
term “mutation” in the GA terminology has become reinterpreted to refer to any form of change,
including the purposeful change produced by a heuristic process. As a result, all methods that
apply heuristics to multiple solutions, whether or not they incorporate strategies for combining
solutions, are now considered kindred to genetic algorithms, and the enlarged collection is
labeled “evolutionary methods.” (This terminology accordingly has acquired the distinction of
embracing nearly every kind of method conceivable.)

5.3.1 Modern Forms and Applications of Scatter Search

Recent implementations of scatter search (cited below) have taken advantage of the implicit
learning capabilities provided by the tabu search framework, leading to refined methods for
determining reference points and for generating new points. Current scatter search versions
have also introduced more sophisticated mechanisms to map fractional values into integer
values. This work is reinforced by new theorems about searches over spaces of zero-one
integer variables. Special models have also been developed to allow both heuristic and exact
methods to transform infeasible trial points into feasible points. Finally, scatter search is the
source of the broader class of path relinking methods, as described in Section 4, which offer a
wide range of mechanisms for creating productive combinations of reference solutions. A brief
summary of some of these developments appears in Figure 5.6.

Implementation of various components of these extensions have provided advances for solving
general nonlinear mixed discrete optimization problems with both linear and nonlinear
constraints, as noted in the references cited under Recommended Reading.

Tabu Search 67

5.3.2 Scatter Search and Path Relinking Interconnections

The relation between scatter search and path relinking sheds additional light on the character
of these approaches. As already remarked, path relinking is a direct extension of scatter
search. The way this extension comes about is as follows.

From a spatial orientation, the process of generating linear combinations of a set of reference
points may be characterized as generating paths between and beyond these points (where
points on such paths also serve as sources for generating additional points). This leads to a
broader conception of the meaning of combinations of points. That is, by natural extension, we
may conceive such combinations to arise by generating paths between and beyond selected
points in neighborhood space, rather than in Euclidean space.

The form of these paths in neighborhood space is easily specified by reference to attribute-
based memory, as used in tabu search. The path relinking strategy thus emerges as a direct
consequence. Just as scatter search encompasses the possibility to generate new solutions by
weighting and combining more than two reference solutions at a time, path relinking includes
the possibility to generate new solutions by multi-parent path constructions that incorporate
attributes from a set of guiding solutions, where these attributes are weighted to determine
which moves are given higher priority, as we have seen in Section 4. The name path relinking
comes from the fact that the generation of such paths in neighborhood space characteristically
“relinks” previous points in ways not achieved in the previous search history.

Fig. 5.6 Scatter Search Extensions.

• Tabu search memory is used to select current reference points from a historical pool

(Glover, 1989, 1994a).

• Tabu search intensification and diversification strategies guide the generation of

new points (Fleurent et al. 1996; Glover, Laguna and Marti, 2000).

• Solutions generated as “vector combinations” are further improved by explicit tabu

search guidance (Trafalis and Al-Harkan, 1995; Glover, Kelly and Laguna, 1996;
Fleurent et al., 1996; Cung, et al. 1997).

• Directional rounding processes focus the search for feasible zero-one solutions

allowing them to be mapped into convex subregions of hyperplanes produced by
valid cutting plane inequalities (Glover, 1995a).

• Neural network learning is applied to filter out promising and unpromising points

for further examination, and pattern analysis is used to predict the location of
promising new solutions (Glover, Kelly and Laguna, 1996).

• Mixed integer programming models generate sets of diversified points, and yield

refined procedures for mapping infeasible points into feasible points (Glover, Kelly
and Laguna, 1996).

• Structured combinations of points take the role of linear combinations, to expand

the range of alternatives generated (Glover, 1994a).

68 Glover and Laguna

The relevance of these concepts as a foundation for evolutionary procedures is illustrated by
recent applications of scatter search and path relinking which have disclosed the promise of
these approaches for solving a variety of optimization problems. A sampling of such
applications includes:

• Vehicle Routing – Rochat and Taillard (1995); Taillard (1996)
• Quadratic Assignment – Cung et al. (1996)
• Financial Product Design – Consiglio and Zenios (1999)
• Neural Network Training – Kelly, Rangaswamy and Xu (1996)
• Job Shop Scheduling – Yamada and Nakano (1996)
• Flow Shop Scheduling – Yamada and Reeves (1997)
• Graph Drawing – Laguna and Marti (1999)
• Linear Ordering – Laguna, Marti and Campos (1997)
• Unconstrained Continuous Optimization – Fleurent et al. (1996)
• Bit Representation – Rana and Whitley (1997)
• Optimizing Simulation – Glover, Kelly and Laguna (1996)
• Complex System Optimization – Laguna (1997)

It is additionally useful to note that re-expressing scatter search relative to neighborhood space
— as done in path relinking — also leads to more general forms of scatter search in Euclidean
space. The form of path relinking manifested in vocabulary building (which results by using
constructive and destructive neighborhoods to create and reassemble components of
solutions), also suggests the relevance of combining solutions in Euclidean space by allowing
different linear combinations to be created for different solution components. The design
considerations that underlie vocabulary building generally carry over to this particular instance
(see Glover and Laguna, 1997).

The broader conception of solution combinations provided by path relinking has useful
implications for evolutionary procedures. The exploitation of neighborhood space and
attribute-based memory gives specific, versatile mechanisms for achieving such combinations,
and provides a further interesting connection between tabu search proposals and genetic
algorithm proposals. In particular, many recently developed “crossover operators,” which have
no apparent relation between each other in the GA setting, can be shown to arise as special
instances of path relinking, by restricting attention to two reference points (taken as parents in
GAs), and by replacing the strategic neighborhood guidance of path relinking with a reliance on
randomization. In short, the options afforded by path relinking for combining solutions are
more unified, more systematic and more encompassing than those provided by the “crossover”
concept, which changes from instance to instance and offers no guidance for how to take
advantage of any given context.

5.4 Greedy Randomized Adaptive Search Procedures (GRASP)

The GRASP methodology was developed in the late 1980s, and the acronym was coined by Tom
Feo (Feo and Resende, 1995). It was first used to solve computationally difficult set covering
problems (Feo and Resende, 1989). Each GRASP iteration consists of constructing a trial
solution and then applying an exchange procedure to find a local optimum (i.e., the final
solution for that iteration). The construction phase is iterative, greedy, and adaptive. It is
iterative because the initial solution is built considering one element at a time. It is greedy
because the addition of each element is guided by a greedy function. It is adaptive because the
element chosen at any iteration in a construction is a function of those previously chosen.

Tabu Search 69

(That is, the method is adaptive in the sense of updating relevant information form iteration to
iteration, as in most constructive procedures.) The improvement phase typically consists of a
local search procedure.

For illustration purposes, consider the design of a GRASP for the 2-partition problem (see, e.g.,
Laguna et al., 1994). This problem consists of clustering the nodes of a weighted graph into
two equal sized sets such that the weight of the edges between the two sets is minimized. In
this context, the iterative, greedy, and adaptive elements of the GRASP construction phase may
be interpreted as follows. The initial solution is built considering one node at a time. The
addition of each node is guided by a greedy function that minimizes the augmented weight of
the partition. The node chosen at any iteration in the construction is a function of the
adjacencies of previously chosen nodes. There is also a probabilistic component in GRASP,
that is applied to the selection of elements during the construction phase. After choosing the
first node for one set, all non-adjacent nodes are of equal quality with respect to the given
greedy function. If one of those nodes is chosen by some deterministic rule, then every GRASP
iteration will repeat this selection. In such stages within a construction where there are
multiple greedy choices, choosing any one of them will not compromise the greedy approach,
yet each will often lead to a very different solution.

To generalize this strategy, consider forming a candidate list (at each stage of the construction)
consisting of high quality elements according to an adaptive greedy function. Then, the next
element to be included in the initial solution is randomly selected from this list. A similar
strategy has been categorized as a cardinality-based semi-greedy heuristic.

The solution generated by a greedy randomized adaptive construction can generally be
improved by the application of an improvement phase following selected construction phases,
as by using a descent method based on an exchange mechanism, since usually the result of
the construction phase is not a local minimum with respect to simple exchange neighborhoods.
There is an obvious computational tradeoff between the construction and improving phases.
An intelligent construction requires fewer improving exchanges to reach a local optimum, and
therefore, it results in a reduction of the total CPU time required per GRASP iteration. The
exchange mechanism can also be used as a basis for a hybrid method, as by incorporating
elements of other methodologies such as simulated annealing or tabu search. In particular,
given that the GRASP constructions inject a degree of diversification to the search process, the
improvement phase may consist of a short term memory tabu search that is fine tuned for
intensification purposes. Other connections may be established with methods such as scatter
search or the path relinking strategy of tabu search, by using the GRASP constructions (or
their associated local optima) as reference points.

Performing multiple GRASP iterations may be interpreted as a means of strategically sampling
the solution space. Based on empirical observations, it has been found that the sampling
distribution generally has a mean value that is inferior to the one obtained by a deterministic
construction, but the best over all trials dominates the deterministic solution with a high
probability. The intuitive justification of this phenomenon is based on the ordering statistics of
sampling. GRASP implementations are generally robust in the sense that it is difficult to find
or devise pathological instances for which the method will perform arbitrarily bad. The
robustness of this method has been well documented in applications to production, flight
scheduling, equipment and tool selection, location, and maximum independent sets.

An interesting connection exists between GRASP and probabilistic tabu search (PTS). If PTS is
implemented in a memoryless form, and restricted to operate only in the constructive phase of
a multistart procedure (stripping away memory, and even probabilistic choice, from the

70 Glover and Laguna

improving phase), then a procedure resembling GRASP results. The chief difference is that the
probabilities used in PTS are rarely chosen to be uniform over members of the candidate list,
but generally seek to capture variations in the evaluations, whenever these variations reflect
anticipated differences in the effective quality of the moves considered.

This connection raises the question of whether a multistart variant of probabilistic tabu search
may offer a useful alternative to memoryless multistart approaches like GRASP. A study of this
issue for the quadratic assignment problem, where GRASP has been reported to perform well,
was conducted by Fleurent and Glover (1996). To provide a basis for comparison, the
improving phases of the PTS multistart method excluded the use of TS memory and guidance
strategies, and were restricted to employ a standard descent procedure. Probabilistic tabu
search mechanisms were used in the constructive phases, incorporating frequency-based
intensification to improve the effectiveness of successive constructions. The resulting
multistart method proved significantly superior to other multistart approaches previously
reported for the quadratic assignment problem. However, it also turned out to be not as
effective as the leading tabu search methods that use memory in the improving phases as well
as (or instead of) in the constructive phases. Nevertheless, it seems reasonable to conjecture
that classes of problems exist where increased reliance on re-starting will prove advantageous,
and where the best results may be obtained from appropriately designed multistart strategies
such as based on greedy randomized search and multistart variants of PTS.

5.5 Neural Networks

Neural networks have a somewhat different set of goals than tabu search, although some
overlaps exist. We indicate how tabu search can be used to extend certain neural net
conceptions, yielding a hybrid that may have both hardware and software implications. The
basic transferable insight from tabu search is that memory components with dimensions such
as recency and frequency can increase the efficacy of a system designed to evolve toward a
desired state. We suggest the merit of fusing neural network memory with tabu search
memory as follows. (A rudimentary acquaintance with neural network ideas is assumed.)

Recency based considerations can be introduced from tabu search into neural networks by a
time delay feedback loop from a given neuron back to itself (or from a given synapse back to
itself, by the device of interposing additional neurons). This permits firing rules and synapse
weights to be changed only after a certain time threshold, determined by the length of the
feedback loop. Aspiration thresholds of the form conceived in tabu search can be embodied in
inputs transmitted on a secondary level, giving the ability to override the time delay for altering
firing thresholds and synaptic weights. Frequency based effects employed in tabu search
similarly may be incorporated by introducing a form of cumulative averaged feedback.

Time delay feedback mechanisms for creating recency and frequency effects also can have
other functions. In a problem solving context, for example, it may be convenient to disregard
one set of options to concentrate on another, while retaining the ability to recover the
suppressed options after an interval. This familiar type of human activity is not a customary
part of neural network design, but can be introduced by the time dependent functions
previously indicated. In addition, a threshold can be created to allow a suppressed option to
“go unnoticed” if current activity levels fall in a certain range, effectively altering the interval
before the option reemerges for consideration. Neural network designs to incorporate those
features may directly make use of the TS ideas that have made these elements effective in the
problem solving domain.

Tabu Search 71

Tabu search strategies that introduce longer term intensification and diversification concerns
are also relevant to neural network processes. As a foundation for blending these approaches,
it is useful to adopt an orientation where a collection of neurons linked by synapses with
various activation weights is treated as a set of attribute variables which can be assigned
alternative values. Then the condition that synapse j (from a specified origin neuron to a
specified destination neuron) is assigned an activation weight in interval p can be coded by the
assignment yj = p, where yj is a component of an attribute vector y as identified in the
discussion of attribute creation processes in connection with vocabulary building. A similar
coding identifies the condition under which a neuron fires (or does not fire) to activate its
associated synapses. As a neural network process evolves, a sequence of these attribute
vectors is produced over time. The association between successive vectors may be imagined to
operate by reference to a neighborhood structure implicit in the neural architecture and
associated connection weights. There also may be an implicit association with some (unknown)
optimization problem, or a more explicit association with a known problem and set of
constraints. In the latter case, attribute assignments (neuron firings and synapse activation)
can be evaluated for efficacy by transformation into a vector x, to be checked for feasibility by x
∈ X. (We maintain a distinction between y and x since there may not be a one-one association
between them.)

Time records identifying the quality of outcomes produced by recent firings, and identifying the
frequency particular attribute assignments produce the highest quality firing outcomes, yield a
basis for delaying changes in certain weight assignments and for encouraging changes in
others. The concept of influence, in the form introduced in tabu search, should be considered
in parallel with quality of outcomes.

Early designs to incorporate tabu search into neural networks are provided in the work of de
Werra and Hertz (1989) and Beyer and Ogier (1991). These applications, which respectively
treat visual pattern identification and nonconvex optimization, are reported to significantly
reduce training times and increase the reliability of outcomes generated. More recent uses of
tabu search to enhance the function of neural networks are provided by the studies reported in
Glover and Laguna (1997).

5.6 Target Analysis

Target analysis (Glover and Greenberg, 1989) links artificial intelligence and operation research
perspectives to give heuristic or exact solution procedures the ability to learn what rules are
best to solve a particular class of problems. Many existing solution methods have evolved by
adopting, a priori, a somewhat limited characterization of appropriate rules for evaluating
decisions. An illustration is provided by restricting the definition of a “best” move to be one
that produces the most attractive objective function change. However, this strategy does not
guarantee that the selected move will lead the search in the direction of the optimal solution.
In fact, in some settings it has been shown that the merit of such a decision rule diminishes as
the number of iterations increases during a solution attempt.

As seen earlier, the tabu search philosophy is to select a best admissible move (from a
strategically controlled candidate list) at each iteration, interpreting best in a broad sense that
goes beyond the use of objective function measures, and relies upon historical parameters to
aid in composing an appropriate evaluation. Target analysis provides a means to exploit this
broader view. For example, target analysis can be used to create a dynamic evaluation
function that incorporates a systematic process for diversifying the search over the longer term.

72 Glover and Laguna

A few examples of the types of questions that target analysis can be used to answer are:

(1) Which decision rule from a collection of proposed alternatives should be selected
to guide the search? (In an expanded setting, how should the rules from the
collection be combined? By interpreting “decision rule” broadly, this
encompasses the issue of selecting a neighborhood, or a combination of
neighborhoods, as the source of a move at a given stage.) Similarly, which
parameter values should be chosen to provide effective instances of the decision
rules?

(2) What attributes are most relevant for determining tabu status, and what

associated tabu restrictions, tabu tenures and aspiration criteria should be
used?

(3) What weights should be assigned to create penalties or inducements (e.g., as a

function of frequency-based memory), and what thresholds should govern their
application?

(4) Which measures of quality and influence are most appropriate, and which

combinations of these lead to the best results in different search phases?

(5) What features of the search trajectory disclose when to focus more strongly on
intensification and when to focus more strongly on diversification? (In general,
what is the best relative emphasis between intensification and diversification,
and under what conditions should this emphasis change?)

Motivation for using target analysis to answer such questions is provided by contrasting target
analysis with the way answers are normally determined. Typically, an experimenter begins
with a set of alternative rules and decision criteria which are intended to capture the principal
elements of a given method, often accompanied by ranges of associated parameters for
implementing the rules. Then various combinations of options are tried, to see how each one
works for a preliminary set of test problems. However, even a modest number of rules and
parameters may create a large number of possibilities in combination, and there is usually
little hope of testing these with any degree of thoroughness. As a result, such testing for
preferred alternatives generally amounts to a process of blind groping. Where methods boast
the lack of optional parameters and rules, typically it is because the experimenter has already
done the advance work to settle upon a particular combination that has been hard-wired for
the user, at best with some degree of adaptiveness built in, but the process that led to this
hard-wiring still raises the prospect that another set of options may be preferable.

More importantly, in an adaptive memory approach, where information from the history of the
search is included among the inputs that determine current choices, a trial and error testing of
parameters may overlook key elements of timing and yield no insights about relationships to be
exploited. Such a process affords no way to uncover or characterize the circumstances
encountered during the search that may cause a given rule to perform well or badly, and
consequently gives no way to anticipate the nature of rules that may perform better than those
originally envisioned. Target analysis replaces this by a systematic approach to create
hindsight before the fact, and then undertakes to “reverse engineer” the types of rules that will
lead to good solutions.

Tabu Search 73

5.6.1. Target Analysis Features

The main features of target analysis may briefly be sketched by viewing the approach as a five
phase procedure (see Figure 5.7). Phase 1 of target analysis is devoted to applying existing
methods to determine optimal or exceptionally high quality solutions to representative
problems of a given class. In order to allow subsequent analysis to be carried out more
conveniently, the problems are often selected to be relatively small, provided this can be done
in a way to assure these problems will exhibit features expected to be encountered in hard
problems from the class examined.

Although this phase is straightforward, the effort allotted to obtaining solutions of the specified
quality will generally be somewhat greater than would be allotted during the normal operation
of the existing solution procedures, in order to assure that the solutions have the quality
sought. (Such an effort may be circumvented in cases where optimal solutions to a particular
testbed of problems are known in advance.)

Phase 2 uses the solutions produced by Phase 1 as targets, which become the focus of a new
set of solution passes. During these passes, each problem is solved again, this time scoring all
available moves (or a high-ranking subset) on the basis of their ability to progress effectively
toward the target solution. The scoring can be a simple classification, such as “good” or “bad,”
or it may capture more refined gradations. In the case where multiple best or near best
solutions may reasonably qualify as targets, the scores may be based on the target that is
"closest to" the current solution.

In some implementations, choices during Phase 2 are biased to select moves that have high
scores, thereby leading to a target solution more quickly than the customary choice rules. In

Fig. 957 Overview of the target analysis methodology.

Selected Class of Problems

Representative Sample

Phase 1 (a)
Existing Solution Methods

High Quality Solutions

Phase 1 (b)

Scoring Procedure

Re-solution of Sample

Phase 2

Master Decision Rule

Phase 3

New Evaluation Functions

Effective Parameter Values

Phase 4

Math or Statistical Models

Measure of Effectiveness

Phase 5

Application of Improved Method

74 Glover and Laguna

other implementations, the method is simply allowed to make its regular moves. In either case,
the goal is to generate information during this solution effort which may be useful in inferring
the solution scores. That is, the scores provide a basis for creating modified evaluations — and
more generally, for creating new rules to generate such evaluations in order to more closely
match them with the measures that represent “true goodness” (for reaching the targets).

In the case of tabu search intensification strategies such as elite solution recovery approaches,
scores can be assigned to parameterized rules for determining the types of solutions to be
saved. For example, such rules may take account of characteristics of clustering and
dispersion among elite solutions. In environments where data bases can be maintained of
solutions to related problems previously encountered, the scores may be assigned to rules for
recovering and exploiting particular instances of these past solutions, and for determining
which new solutions will be added to the data bases as additional problems are solved. (The
latter step, which is part of the target analysis and not part of the solution effort can be
performed “off line.”) An integration of target analysis with a generalized form of sensitivity
analysis for these types of applications has been developed and implemented in financial
planning and industrial engineering by Glover, et al. (1998). Such designs are also relevant, for
example, in applications of linear and nonlinear optimization based on simplex method
subroutines, to identify sets of variables to provide crash-basis starting solution.

In path relinking strategies, scores can be applied to rules for matching initiating solutions
with guiding solutions. As with other types of decision rules produced by target analysis, these
will preferably include reference to parameters that distinguish different problem instances.
The parameter-based rules similarly can be used to select initiating and guiding solutions from
pre-existing solutions pools. Tunneling applications of path relinking, which allow traversal of
infeasible regions, and strategic oscillation designs that purposely drive the search into and out
of such regions, are natural accompaniments for handling recovered solutions that may be
infeasible.

Phase 3 constructs parameterized functions of the information generated in Phase 2, with the
goal of finding values of the parameters to create a master decision rule. This rule is designed
to choose moves that score highly, in order to achieve the goal that underlies Phase 2. It
should be noted that the parameters available for constructing a master decision rule depend
on the search method employed. Thus, for example, tabu search may include parameters that
embody various elements of recency-based and frequency-based memory, together with
measures of influence linked to different classes of attributes or to different regions from which
elite solutions have been derived.

Phase 4 transforms the general design of the master decision rule into a specific design by
applying a model to determine effective values for its parameters. This model can be a simple
set of relationships based on intuition, or can be a more rigorous formulation based on
mathematics or statistics (such as a goal programming or discriminant analysis model, or even
a “connectionist” model based on neural networks).

The components of phases 2, 3 and 4 are not entirely distinct, and may be iterative. On the
basis of the outcomes of these phases, the master decision rule becomes the rule that drives
the solution method. In the case of tabu search, this rule may use feedback of outcomes
obtained during the solution process to modify its parameters for the problem being solved.

Phase 5 concludes the process by applying the master decision rule to the original
representative problems and to other problems from the chosen solution class to confirm its
merit. The process can be repeated and nested to achieve further refinement.

Tabu Search 75

Target analysis has an additional important function. On the basis of the information
generated during its application, and particularly during its final confirmation phase, the
method produces empirical frequency measures for the probabilities that choices with high
evaluations will lead to an optimal (or near-optimal) solution within a certain number of steps.
These decisions are not only at tactical levels but also at strategic levels, such as when to
initiate alternative solution phases, and which sources of information to use for guiding these
phases (e.g., whether from processes for tracking solution trajectories or for recovering and
analyzing solutions). By this means, target analysis can provide inferences concerning
expected solution behavior, as a supplement to classical “worst case” complexity analysis.
These inferences can aid the practitioner by indicating how long to run a solution method to
achieve a solution desired quality, according to specified empirical probability.

One of the useful features of target analysis is its capacity for taking advantage of human
interaction. The determination of key parameters, and the rules for connecting them, can draw
directly on the insight of the observer as well as on supplementary analytical techniques. The
ability to derive inferences from pre-established knowledge of optimal or near optimal
solutions, instead of manipulating parameters blindly (without information about the relation
of decisions to targeted outcomes), can save significant investment in time and energy. The
key, of course, is to coordinate the phases of solution and guided re-solution to obtain
knowledge that has the greatest utility. Many potential applications of target analysis exist,
and recent applications suggest the approach holds considerable promise for developing
improved decision rules for difficult optimization problems.

5.6.2 Illustrative Application and Implications

An application of target analysis to a production scheduling problem (Laguna and Glover,
1993) provides a basis for illustrating some of the relevant considerations of the approach. In
this study, the moves consisted of a combination of swap and insert moves, and scores were
generated to identify the degree to which a move brought a solution closer to the target solution
(which consisted of the best known solution before improving the method by means of target
analysis). In the case of a swap move, for example, a move might improve, worsen (or, by the
measure used, leave unchanged) the “positional value” of each component of the swap, and by
the simplification of assigning scores of 1, 0 or -1 to each component, a move could accordingly
receive a score ranging from 2 to -2. The application of target analysis then proceeded by
tracking the scores of the 10 highest evaluation moves at each iteration, to determine the
circumstances under which the highest evaluations tended to correspond to the highest scores.
Both tabu and non-tabu moves were included in the analysis, to see whether tabu status was
also appropriately defined.

At an early stage of the analysis a surprising relationship emerged. Although the scores of the
highest evaluation non-tabu moves ranged across both positive and negative values, the
positive values were largely associated with moves that improved the schedule while the
negative values were largely associated with moves that worsened the schedule. In short, the
highest evaluations were significantly more “accurate” (corresponded more closely to high
scores) during phases where the objective function value of the schedule improved than during
phases when it deteriorated.

A simple diversification strategy was devised to exploit this discovery. Instead of relying on the
original evaluations during “disimproving phases,” the strategy supplemented the evaluations
over these intervals by assigning penalties to moves whose component jobs had been moved
frequently in the past. The approach was initiated at a local optimum after the progress of the

76 Glover and Laguna

search began to slow (as measured by how often a new best solution was found), and was de-
activated as soon as a move was executed that also was an improving move (to become re-
activated the next time that all available moves were disimproving moves). The outcome was
highly effective, producing new solutions that were often superior to the best previously found,
especially for larger problems, and also finding the highest quality solutions more quickly.

The success of this application, in view of its clearly limited scope, provides an incentive for
more thorough applications. For example, a more complete analysis would reasonably proceed
by first seeking to isolate the high scoring moves during the disimproving phases and to
determine how frequency-based memory and other factors could be used to identify these
moves more effectively. Comparisons between evaluations proposed in this manner and their
associated move scores would then offer a foundation for identifying more intelligent choices.
Classifications to segregate the moves based on criteria other than “improving” and
“disimproving” could also be investigated. Additional relevant factors that may profitably be
taken into account are examined in the illustration of the next subsection.

A Hypothetical Illustration. The following hypothetical example embodies a pattern related to
the one uncovered in the scheduling application cited above. However, the pattern in this case
is slightly more ambiguous, and less clearly points to options that it may be exploited.

For simplicity in this illustration, suppose that moves are scored to be either “good” or “bad.”
(If each move changes the value of a single 0-1 variable, for instance, a move may be judged
good or bad depending on whether the assigned value is the same as in the target solution.
More generally, a threshold can be used to differentiate the two classifications.)

Table 5.1 indicates the percent of time each of the five highest evaluation moves, restricting
attention in this case to those that are non-tabu, receives a good score during the search
history. (At a first stage of conducting the target analysis, this history could be for a single
hard problem, or for a small collection of such problems.) The Move Rank in the table ranges
from 1 to 5, corresponding to the highest evaluation move, the 2nd highest evaluation move,
and so on to the 5th highest evaluation move.

The indicated percent values do not total 100 because good scores may also be assigned to
moves with lower evaluations, whose ranks are not included among those shown. Also, it may
be expected that some non-tabu moves will also receive good scores. (A fuller analysis would
similarly show ranks and scores for these moves.)

Table 5.1 Moves throughout the search history.
Move Rank 1 2 3 4 5
Percent of moves
with “good” scores

22 14 10 20 16

At first glance, the table appears to suggest that the fourth and fifth ranked moves are almost
as good as the first ranked move, although the percent of moves that receive good scores is not
particularly impressive for any of the ranks. Without further information, a strategy might be
contemplated that allocates choices probabilistically among the first, fourth and fifth ranked
moves (though such an approach would not be assured to do better than choosing the first
ranked move at each step). Tables 5.2 and 5.3 below provide more useful information about
choices that are potentially favorable, by dividing the iterations into improving and
disimproving phases as in the scheduling study previously discussed.

Tabu Search 77

Table 5.2 Moves during improving phases.
Move Rank 1 2 3 4 5
Percent of moves
with “good” scores

34 21 9 14 7

Table 5.3 Moves during disimproving phases.
Move Rank 1 2 3 4 5
Percent of moves
with “good” scores

8 7 11 26 25

These tables are based on a hypothetical situation where improving and disimproving moves
are roughly equal in number, so that the percent values shown in Table 9.1 are the average of
the corresponding values in Tables 9.2 and 9.3. (For definiteness, moves that do not change
the problem objective function may be assumed to be included in the improving phase, though
a better analysis might treat them separately.)

The foregoing outcomes to an extent resemble those found in the scheduling study, though
with a lower success rate for the highest evaluation improving moves. Clearly Tables 5.2 and
5.3 give information that is more exploitable than the information in Table 5.1. According to
these latter tables, it would be preferable to focus more strongly on choosing one of the two
highest evaluation moves during an improving phase, and one of the fourth or fifth highest
evaluation moves during a disimproving phase. This conclusion is still weak in several
respects, however, and we examine considerations that may lead to doing better.

Refining the Analysis. The approach of assigning scores to moves, as illustrated in Tables
5.1, 5.2 and 5.3, disregards the fact that some solution attributes (such as assignments of
values to particular 0-1 variables) may be fairly easy to choose “correctly,” while others may be
somewhat harder. Separate tables of the type illustrated should therefore be created for easy
and hard attributes (as determined by how readily their evaluations lead to choices that would
generate the target solution), since the preferred rules for evaluating moves may well differ
depending on the types of attributes the moves contain. Likewise, an effective strategy may
require that easy and hard attributes become the focus of different search phases. The
question therefore arises as to how to identify such attributes.

As a first approximation, we may consider an easy attribute to be one that often generates an
evaluation that keeps it out of the solution if it belongs out, or that brings it into the solution if
it belongs in. A hard attribute behaves oppositely. Thus, a comparison between frequency-
based memory and move scores gives a straightforward way to differentiate these types of
attributes. Both residence and transition frequencies are relevant, though residence measures
are probably more usually appropriate. For example, an attribute that belongs to the current
solution a high percentage of the time, and that also belongs to the target solution, would
evidently qualify as easy. On the other hand, the number of times the attribute is accepted or
rejected from the current solution may sometimes be less meaningful than how long it stays in
or out. The fact that residence and transition frequencies are characteristically used in tabu
search makes them conveniently available to assist in differentiations that can improve the
effectiveness of target analysis.

5.6.3 Conditional Dependencies Among Attributes

Tables 5.1, 5.2 and 5.3 suggest that the search process that produced them is relatively
unlikely to find the target solution. Even during improving phases, the highest evaluation

78 Glover and Laguna

move is almost twice as likely to be bad as good. However, this analysis is limited, and
discloses a limitation of the tables themselves. In spite of first appearances, it is entirely
possible that these tables could be produced by a search process that successfully obtains the
target solution (by a rule that chooses a highest evaluation move at each step). The reason is
that the relation between scores and evaluations may change over time. While there may be
fairly long intervals where choices are made poorly, there may be other shorter intervals where
the choices are made more effectively – until eventually one of these shorter intervals succeeds
in bringing all of the proper attributes into the solution.

Such behavior is likely to occur in situations where correctly choosing some attributes may
pave the way for correctly choosing others. The interdependence of easy and hard attributes
previously discussed is carried a step farther by these conditional relationships, because an
attribute that at one point deserves to be classified hard may later deserve to be classified easy,
once the appropriate foundations are laid.

Instead of simply generating tables that summarize results over long periods of the search
history, therefore, it can be important to look for blocks of iterations where the success rate of
choosing good moves may differ appreciably from the success rate overall. These blocks
provide clues about intermediate solution compositions that may transform hard attributes
into easy ones, and thus about preferred sequences for introducing attributes that may exploit
conditional dependencies. The natural step then is to see which additional types of evaluation
information may independently lead to identifying such sequences.

A simple instance of this type of effect occurs where the likelihood that a given attribute will
correctly be selected (to enter or leave the solution) depends roughly on the number of
attributes that already correctly belong to the solution. In such situations, the appropriate way
to determine a “best choice” is therefore also likely to depend on this number of attributes
correctly in solution. Even though such information will not generally be known during the
search, it may be possible to estimate it and adjust the move evaluations accordingly. Such
relationships, as well as the more general ones previously indicated, are therefore worth
ferreting out by target analysis.

5.6.4 Differentiating Among Targets

In describing the steps of target analysis, it has already been noted that scores should not
always be rigidly determined by only one specific target, but may account for alternative
targets, and in general may be determined by the target that is closest to the current solution
(by a metric that depends on the context). Acknowledging that there may be more than one
good solution that is worth finding, such a differentiation among targets can prove useful. Yet
even in the case where a particular solution is uniquely the one to be sought (as where its
quality may be significantly better than that of all others known), alternative targets may be
still be valuable to consider in the role of intermediate solutions, and may provide a
springboard to finding additional solutions that are better. Making reference to intermediate
targets is another way of accounting for the fact that conditional dependencies may exist
among the attributes, as previously discussed. However, such dependencies in some cases
may be more easily exploited by explicitly seeking constructions at particular stages that may
progressively lead to a final destination.

Some elite solutions may provide better targets than others because they are easier to obtain —
completely apart from developing strategies to reach ultimate targets by means of intermediate
ones. However, some care is needed in making the decision to focus on such easier targets as
a basis for developing choice rules. As in the study of Lokketangen and Glover (1997), it may

Tabu Search 79

be that focusing instead on the harder targets will yield rules that likewise cause the easier
targets to be found more readily, and these rules may apply to a wider spectrum of problems
than those derived by focusing on easier targets.

5.6.5 Generating Rules by Optimization Models

Target analysis can use optimization models to generate decision rules by finding weights for
various decision criteria to create a composite (master) rule. To illustrate, let G and B
respectively denote index sets for good moves and bad moves, as determined from move scores,
as in the classification embodied in Tables 5.1, 5.2, and 5.3. Incorporate the values of the
different decision criteria in a vector Ai for i G∈ and i ∈ B; i.e., the jth component aij of Ai is the
value assigned to move i by the decision criterion j. These components need not be the result
of rules, but can simply correspond to data considered relevant to constructing rules. In the
tabu search setting, such data can include elements of recency-based and frequency-based
memory. Then we may consider a master rule which is created by applying a weight vector w
to each vector Ai to produce a composite decision value ∑=

j
jiji wawA . An ambitious objective

is to find a vector w that yields

Aiw > 0 for i ∈ G
Aiw ≤ 0 for i ∈ B

If such a weight vector w could be found, then all good moves would have higher evaluations
by the composite criterion than all bad moves, which of course is normally too much to ask. A
step toward formulating a more reasonable goal is as follows. Let G(iter) and B(iter) identify the
sets G and B for a given iteration iter. Then an alternative objective is to find a w so that, at
each such iteration, at least one i G iter∈ () would yield

Aiw > Akw for all k ∈ B(iter)

or equivalently

Max{Aiw: i ∈ G(iter)} > Max{Akw: k ∈ B(iter)}

This outcome would insure that a highest evaluation move by the composite criterion will
always be a good move. Naturally, this latter goal is still too optimistic. Nevertheless, it is
possible to devise goal programming models (related to LP discriminant analysis models) that
can be used to approximate this goal. A model of this type has proved to be effective for
devising branching rules to solve a problem of refueling nuclear reactors (Glover, Klingman and
Phillips, 1990).

A variety of opportunities exist for going farther in such strategies. For example, issues of
creating nonlinear and discontinuous functions to achieve better master rules can be
addressed by using trial functions to transform components of Ai vectors into new components,
guided by LP sensitivity and postoptimality analysis. Target analysis ideas previously indicated
can also be useful in this quest.

The range of possibilities for taking advantage of target analysis is considerable, and for the
most part only the most rudimentary applications of this learning approach have been
initiated. The successes of these applications make further exploration of this approach
attractive.

80 Glover and Laguna

6. Neglected Tabu Search Strategies

We briefly review several key strategies in tabu search that are often neglected (especially in
beginning studies), but which are important for producing the best results.

Our purpose is to call attention to the relevance of particular elements that are mutually
reinforcing, but which are not always discussed “side by side” in the literature, and which
deserve special emphasis. In addition, observations about useful directions for future research
are included.

A comment regarding implementation: first steps do not have to include the most
sophisticated variants of the ideas discussed in the following sections, but the difference
between “some inclusion” and “no inclusion” can be significant. Implementations that
incorporate simple instances of these ideas will often disclose the manner in which refined
implementations can lead to improved performance.

The material that follows brings together ideas described in preceding sections to provide a
perspective on how they interrelate. In the process, a number of additional observations are
introduced.

6.1 Candidate List Strategies

Efficiency and quality can be greatly affected by using intelligent procedures for isolating
effective candidate moves, rather than trying to evaluate every possible move in a current
neighborhood of alternatives. This is particularly true when such a neighborhood is large or
expensive to examine. The gains to be achieved by using candidate lists have been widely
documented, yet many TS studies overlook their relevance.

Careful organization in applying candidate lists, as by saving evaluations from previous
iterations and updating them efficiently, can also be valuable for reducing overall effort. Time
saved in these ways allows a chance to devote more time to higher level features of the search.

While the basic theme of candidate lists is straightforward, there are some subtleties in the
ways candidate list strategies may be used. Considerable benefit can result by being aware of
fundamental candidate list approaches, such as the Subdivision Strategy, the Aspiration Plus
Strategy, the Elite Candidate List Strategy, the Bounded Change Strategy and the Sequential
Fan Strategy (as discussed in Section 3).

An effective integration of a candidate list strategy with the rest of a tabu search method will
typically benefit by using TS memory designs to facilitate functions to be performed by the
candidate lists. This applies especially to the use of frequency based memory. A major
mistake of some TS implementations, whether or not they make use of candidate lists, is to
consider only the use of recency based memory. Frequency based memory — which itself takes
different forms in intensification phases and diversification phases — cannot only have a
dramatic impact on the performance of the search in general but also can often yield gains in
the design of candidate list procedures. A useful way to meld different candidate list
procedures is described in Glover (1997).

Tabu Search 81

6.2 Intensification Approaches

Intensification strategies, which are based on recording and exploiting elite solutions or,
characteristically, specific features of these solutions, have proved very useful in a variety of
applications. Some of the relevant forms of such strategies and considerations for
implementing them are as follows.

6.2.1 Restarting with Elite Solutions

The simplest intensification approach is the strategy of recovering elite solutions in some order,
each time the search progress slows, and then using these solutions as a basis for re-initiating
the search. The list of solutions that are candidates to be recovered is generally limited in size,
often in the range of 20 to 40 (although in parallel processing applications the number is
characteristically somewhat larger). The size chosen for the list in serial TS applications also
corresponds roughly to the number of solution recoveries anticipated to be done during the
search, and so may be less or more depending on the setting. When an elite solution is
recovered from the list, it is removed, and new elite solutions are allowed to replace less
attractive previous solutions — usually dropping the worst of the current list members.
However, if a new elite solution is highly similar to a solution presently recorded, instead of
replacing the current worst solution, the new solution will compete directly with its similar
counterpart to determine which solution is saved.

This approach has been applied very effectively in job shop and flow shop scheduling, in vehicle
routing, and in telecommunication design problems. One of the best approaches for
scheduling applications keeps the old TS memory associated with the solution, but makes sure
the first new move away from this solution goes to a different neighbor than the one visited
after encountering this solution the first time. Another effective variant does not bother to save
the old TS memory, but uses a probabilistic TS choice design.

The most common strategy is to go through the list from best to worst, but in some cases it has
worked even better to go through the list in the other direction. In this approach, it appears
effective to allow two passes of the list. On the first pass, when a new elite solution is found
that falls below the quality of the solution currently recovered, but which is still better than the
worst already examined on the list, the method still adds the new solution to the list and
displaces the worst solution. Then a second pass, after reaching the top of the list, recovers
any added solutions not previously recovered.

6.2.2 Frequency of Elite Solutions

Another primary intensification strategy is to examine elite solutions to determine the
frequency in which particular solution attributes occur (where the frequency is typically
weighted by the quality of the solutions in which the attributes are found).

This strategy was originally formulated in the context of identifying “consistent” and “strongly
determined” variables — where, loosely speaking, consistent variables are those more
frequently found in elite solutions, while strongly determined variables are those that would
cause the greatest disruption by changing their values (as sometimes approximately measured
by weighting the frequencies based on solution quality). The idea is to isolate the variables that
qualify as more consistent and strongly determined (according to varying thresholds), and then
to generate new solutions that give these variables their “preferred values.” This can be done
either by rebuilding new solutions in a multistart approach or by modifying the choice rules of
an ongoing solution effort to favor the inclusion of these value assignments.

82 Glover and Laguna

Keeping track of the frequency that elite solutions include particular attributes (such as edges
of tours, assignments of elements to positions, narrow ranges of values taken on by variables,
etc.) and then favoring the inclusion of the highest frequency elements, effectively allows the
search to concentrate on finding the best supporting uses and values of other elements. A
simple variant is to “lock in” a small subset of the most attractive attributes (value
assignments) — allowing this subset to change over time or on different passes.

A Relevant Concern: In the approach that starts from a current (good) solution, and tries to
bring in favored elements, it is important to introduce an element that yields a best outcome
from among the current contenders (where, as always, best is defined to encompass
considerations that are not solely restricted to objective function changes). If an attractive
alternative move shows up during this process, which does not involve bringing in one of these
elements, aspiration criteria may determine whether such a move should be taken instead.
Under circumstances where the outcome of such a move appears sufficiently promising, the
approach may be discontinued and allowed to enter an improving phase (reflecting a decision
that enough intensification has been applied, and it is time to return to searching by
customary means).

Intensification of this form makes it possible to determine what percent of “good attributes”
from prior solutions should be included in the solution currently generated. It also gives
information about which subsets of these attributes should go together, since it is preferable
not to choose attributes during this process that cause the solution to deteriorate compared to
other choices. This type of intensification strategy has proved highly effective in the settings of
vehicle routing and zero-one mixed integer optimization.

6.2.3 Memory and Intensification

It is clearly somewhat more dangerous to hold elements “in” solution than to hold them “out”
(considering that a solution normally is composed of a small fraction of available elements — as
where a tree contains only a fraction of the edges of a graph). However, there is an important
exception, previously intimated. As part of a longer term intensification strategy, elements may
be selected very judiciously to be “locked in” on the basis of having occurred with high
frequency in the best solutions found. In that case, choosing different mutually compatible
(and mutually reinforcing) sets to lock in can be quite helpful. This creates a combinatorial
implosion effect (opposite to a combinatorial explosion effect) that shrinks the solution space to
a point where best solutions over the reduced space are likely to be found more readily.

The key to this type of intensification strategy naturally is to select an appropriate set of
elements to lock in, but the chances appear empirically to be quite high that some subset of
those with high frequencies in earlier best solutions will be correct. Varying the subsets
selected gives a significant likelihood of picking a good one. (More than one subset can be
correct, because different subsets can still be part of the same complete set.) Aspiration
criteria make it possible to drop elements that are supposedly locked in, to give this approach
more flexibility.

6.2.4 Relevance of Clustering for Intensification

A search process over a complex space is likely to produce clusters of elite solutions, where one
group of solutions gives high frequencies for one set of attributes and another group gives high
frequencies for a different set. It is important to recognize this situation when it arises.
Otherwise there is a danger that an intensification strategy may try to compel a solution to

Tabu Search 83

include attributes that work against each other. This is particularly true in a strategy that
seeks to generate a solution by incorporating a collection of attributes “all at once,” rather than
using a step by step evaluation process that is reapplied at each move through a neighborhood
space. (Stepping through a neighborhood has the disadvantage of being slower, but may
compensate by being more selective. Experimentation to determine the circumstances under
which each of these alternative intensification approaches may be preferable would be quite
valuable.)

A strategy that incorporates a block of attributes together may yield benefits by varying both
the size and composition of the subsets of high frequency “attractive” attributes, even if these
attributes are derived from solutions that lie in a common cluster, since the truly best
solutions may not include them all. Threshold based forms of logical restructuring, as
discussed in Section 3, may additionally lead to identifying elements to integrate into solutions
that may not necessarily belong to solutions previously encountered. The vocabulary building
theme becomes important in this connection. The relevance of clustering analysis for logical
restructuring and vocabulary building is reinforced by the use of a related conditional analysis,
which is examined subsequently in Section 6.5.

6.3 Diversification Approaches

Diversification processes in tabu search are sometimes applied in ways that limit their
effectiveness, due to overlooking the fact that diversification is not just “random” or
“impulsive,” but depends on a purposeful blend of memory and strategy. As noted in Section
3, recency and frequency based memory are both relevant for diversification. Historically,
these ideas stem in part from proposals for exploiting surrogate constraint methods. In this
setting, the impetus is not simply to achieve diversification, but to derive appropriate weights
in order to assure that evaluations will lead to solutions that satisfy required conditions (see
Section 5). Accordingly, it is important to account for elements such as how often, to what
extent, and how recently, particular constraints have been violated, in order to determine
weights that produce more effective valuations.

The implicit learning effects that underlie such uses of recency, frequency and influence are
analogous to those that motivate the procedures used for diversification (and intensification) in
tabu search. Early strategic oscillation approaches exploited this principle by driving the
search to various depths outside (and inside) feasibility boundaries, and then employing
evaluations and directional search to move toward preferred regions.

In the same way that these early strategies bring diversification and intensification together as
part of a continuously modulated process, it is important to stress that these two elements
should be interwoven in general. A common mistake in many TS implementations is to apply
diversification without regard for intensification. “Pure” diversification strategies are
appropriate for truly long term strategies, but over the intermediate term, diversification is
generally more effective if it is applied by heeding information that is also incorporated in
intensification strategies. In fact, intensification by itself can sometimes cause a form of
diversification, because intensifying over part of the space allows a broader search of the rest of
the space. A few relevant concerns are as follows.

6.3.1 Diversification and Intensification Links

A simple and natural diversification approach is to keep track of the frequency that attributes
occur in non-elite solutions, as opposed to solutions encountered in general, and then to

84 Glover and Laguna

periodically discourage the incorporation of attributes that have modest to high frequencies
(giving greater penalties to larger frequencies). The reference to non-elite solutions tends to
avoid penalizing attributes that would be encouraged by an intensification strategy.

More generally, for a “first level” balance, an Intermediate Term Memory matrix may be used,
where the high frequency items in elite solutions are not penalized by the long term values, but
may even be encouraged. The tradeoffs involved in establishing the degree of encouragement,
or the degree of reducing the penalties, represents an area where a small amount of
preliminary testing can be valuable. This applies as well to picking thresholds to identify high
frequency items. (Simple guesses about appropriate parameter values can often yield benefits,
and tests of such initial guesses can build an understanding that leads to increasingly effective
strategies.)

By extension, if an element has never or rarely been in a solution generated, then it should be
given a higher evaluation for being incorporated in a diversification approach if it was “almost
chosen” in the past but didn't make the grade. This observation has not been widely heeded,
but is not difficult to implement, and is relevant to intensification strategies as well. The
relevant concerns are illustrated in the discussion of “Persistent Attractiveness” and “Persistent
Voting” in Chapter 7 of Glover and Laguna (1997).

6.3.2 Implicit Conflict and the Importance of Interactions

Current evaluations also should not be disregarded while diversification influences are
activated. Otherwise, a diversification process may bring elements together that conflict with
each other, make it harder rather than easier to find improved solutions.

For example, a design that gives high penalties to a wide range of elements, without
considering interactions, may drive the solution to avoid good combinations of elements.
Consequently, diversification — especially in intermediate term phases — should be carried out
for a limited number of steps, accompanied by watching for and sidestepping situations where
indiscriminately applying penalties would create incompatibilities or severe deterioration of
quality. To repeat the theme: even in diversification, attention to quality is important. And as
in “medical remedies,” sometimes small doses are better than large ones. Larger doses (i.e.,
more radical departures from previous solutions) which are normally applied less frequently,
can still benefit by coordinating the elements of quality and change.

6.3.3 Reactive Tabu Search

An approach called Reactive Tabu Search (RTS) developed by Battiti and Tecchiolli (1992,
1994a) deserves additional consideration as a way to achieve a useful blend of intensification
and diversification. RTS incorporates hashing in a highly effective manner to generate
attributes that are very nearly able to differentiate among distinct solutions. That is, very few
solutions contain the same hashed attribute, applying standard hash function techniques.
Accompanying this, Battiti and Tecchiolli use an automated tabu tenure, which begins with the
value of 1 (preventing a hashed attribute from being reinstated if this attribute gives the
“signature” of the solution visited on the immediately preceding step). This tenure is then
increased if examination shows the method is possibly cycling, as indicated by periodically
generating solutions that produce the same hashed attribute.

The tabu tenure, which is the same for all attributes, is increased exponentially when
repetitions are encountered, and decreased gradually when repetitions disappear. Under
circumstances where the search nevertheless encounters an excessive number of repetitions

Tabu Search 85

within a given span (i.e., where a moving frequency measure exceeds a certain threshold), a
diversification step is activated, which consists of making a number of random moves
proportional to a moving average of the cycle length.

The reported successes of this approach invite further investigations of its underlying ideas
and related variants. As a potential bases for generating such variants, attributes created by
hashing may be viewed as fine grain attributes, which give them the ability to distinguish
among different solutions. By contrast, “standard” solution attributes, which are the raw
material for hashing, may be viewed as coarse grain attributes, since each may be contained in
(and hence provide a signature for) many different solutions. Experience has shown that tabu
restrictions based on coarse grain attributes are often advantageous for giving increased vigor
to the search. (There can exist a variety of ways of defining and exploiting attributes,
particularly at coarser levels, which complicates the issue somewhat.) This raises the question
of when particular degrees of granularity are more effective than others.

It seems reasonable to suspect that fine grain attributes may yield greater benefits if they are
activated in the vicinity of elite solutions, thereby allowing the search to scour “high quality
terrain” more minutely. This effect may also be achieved by reducing tabu tenures for coarse
grain attributes — or basing tabu restrictions on attribute conjunctions — and using more
specialized aspiration criteria. Closer scouring of critical regions can also be brought about by
using strongly focused candidate list strategies, such as a sequential fan candidate list
strategy. (Empirical comparisons of such alternatives to hashing clearly would be of interest.)
On the other hand, as documented by Nonobe and Ibaraki (1998, 2001), the use of “extra
coarse grain” attributes (those that prohibit larger numbers of moves when embodied in tabu
restrictions) can prove advantageous for solving large problems over a broadly defined problem
domain.

Another type of alternative to hashing also exists, which is to create new attributes by
processes that are not so uniform as hashing. A potential drawback of hashing is its inability
to distinguish the relative importance (and appropriate influence) of the attributes that it seeks
to map into others that are fine grained. A potential way to overcome this drawback is to make
use of vocabulary building (Glover and Laguna, 1997) and of conditional analysis (Section 6.5).

6.4 Strategic Oscillation

A considerable amount has been written on strategic oscillation and its advantages. However,
one of the uses of this approach that is frequently overlooked involves the idea of oscillating
among alternative choice rules and neighborhoods. As stressed in Section 4, an important
aspect of strategic oscillation is the fact that there naturally arise different types of moves and
choice rules that are appropriate for negotiating different regions and different directions of
search. Thus, for example, there are many constructive methods in graph and scheduling
problems, but strategic oscillation further leads to the creation of complementary “destructive
methods” which can operate together with their constructive counterparts. Different criteria
emerge as relevant for selecting a move to take on a constructive step versus one to take on a
destructive step. Similarly, different criteria apply according to whether moves are chosen
within a feasible region or outside a feasible region (and whether the search is moving toward
or away from a feasibility boundary).

The variation among moves and evaluations introduces an inherent vitality into the search that
provides one of the sources underlying the success of strategic oscillation approaches. This
reinforces the motivation to apply strategic oscillation to the choice of moves and evaluation

86 Glover and Laguna

criteria themselves, selecting moves from a pool of possibilities according to rules for
transitioning from one choice to another. In general, instead of picking a single rule, a process
of invoking multiple rules provides a range of alternatives that run all the way from “strong
diversification” to “strong intensification.”

This form of oscillation has much greater scope than may at first be apparent, because it
invokes the possibility of simultaneously integrating decision rules and neighborhoods, rather
than only visiting them in a strategically determined sequence.

Such concepts are beginning to find counterparts in investigations being launched by the
computer science community. The “agent” terminology is being invoked in such applications to
characterize different choice mechanisms and neighborhoods as representing different agents.
Relying on this representation, different agents then are assigned to work on (or “attack”) the
problem serially or in parallel. The CS community has begun to look upon this as a significant
innovation — unaware of the literature where such ideas were introduced a decade or more ago
— and the potential richness and variation of these ideas still seems not to be fully recognized.
For example, there have not yet been any studies that consider the idea of “strategically
sequencing” rules and neighborhoods, let alone those that envision the notion of parametric
integration. The further incorporation of adaptive memory structures to enhance the
application of such concepts also lies somewhat outside the purview of most current CS
proposals. At the same time, however, TS research has also neglected to conduct empirical
investigations of the broader possibilities. This is clearly an area that deserves fuller study.

6.5 Clustering and Conditional Analysis

To reinforce the theme of identifying opportunities for future research, we provide an
illustration to clarify the relevance of clustering and conditional analysis, particularly as a
basis for intensification and diversification strategies in tabu research.

An Example: Suppose 40 elite solutions have been saved during the search, and each solution
is characterized as a vector x of zero-one variables xj, for { }nNj ,,1K=∈ . Assume the
variables that receive positive values in at least one of the elite solutions are indexed x1 to x30.
(Commonly in such circumstances, n may be expected to be somewhat larger than the number
of positive valued variables, e.g., in this case, reasonable values may be n = 100 or 1000.)

For simplicity, we restrict attention to a simple weighted measure of consistency which is given
by the frequency that the variables x1 to x30 receive the value 1 in these elite solutions. (We
temporarily disregard weightings based on solution quality and other aspects of “strongly
determined” assignments.) Specifically, assume the frequency measures are as shown in Table
6.1.

Since each of x1 to x15 receives a value of 1 in 24 of the 40 solutions, these variables tie for
giving “most frequent” assignments. An intensification strategy that favors the inclusion of
some number of such assignments would give equal bias to introducing each of x1 to x15 at the
value 1. (Such a bias would typically be administrated either by creating modified evaluations
or by incorporating probabilities based on such evaluations.)

Tabu Search 87

To illustrate the relevance of clustering, suppose the collection of 40 elite solutions can be
partitioned into two subsets of 20 solutions each, whose characteristics are summarized in
Table 6.2.

A very different picture now emerges. The variables x1 to x15 no longer appear to deserve equal
status as “most favored” variables. Treating them with equal status may be a useful source of
diversification, as opposed to intensification, but the clustered data provide more useful
information for diversification concerns as well. In short, clustering gives a relevant contextual
basis for determining the variables (and combinations of variables) that should be given special
treatment.

6.5.1 Conditional Relationships

To go a step beyond the level of differentiation provided by cluster analysis, it is useful to
sharpen the focus by referring explicitly to interactions among variables. Such interactions
can often be identified in a very straightforward way, and can form a basis for more effective
clustering. In many types of problems, the number of value assignments (or the number of
“critical attributes”) needed to specify a solution is relatively small compared to the total
number of problem variables. (For example, in routing, distribution and telecommunication
applications, the number of links contained in feasible constructions is typically a small
fraction of those contained in the underlying graph.) Using a 0-1 variable representation of
possibilities, it is not unreasonable in such cases to create a cross reference matrix, which
identifies variables (or coded attributes) that simultaneously receive a value of 1 in a specific
collection of elite solutions.

To illustrate, suppose the index set P = {1,...,p} identifies the variables xj that receive a value of
1 in at least r solutions from the collection of elite solutions under consideration. (Apart from
other strategic considerations, the parameter r can also be used to control the size of p, since
larger values of r result in smaller values of p.)

Table 6.1 Frequency measures.

Variables xj = 1 Number of
Solutions

x1 to x15 24
x16 to x20 21
x21 to x25 17
x26 to x30 12

Table 6.2 Frequency measures for two subsets.

Subset 1 (20 solutions) Subset 2 (20 solutions)
Variables xj = 1 No. of

Solutions
Variables xj = 1 No. of

Solutions
x11 to x15 20 x16 to x20 20
x21 to x25 16 x6 to x10 16
x1 to x5 12 x1 to x5 12
x6 to x10 8 x26 to x30 8
x26 to x30 4 x11 to x15 4
x16 to x20 1 x21 to x25 1

88 Glover and Laguna

Then create a p×p symmetric matrix M whose entries mij identify the number of solutions in
which xi and xj are both 1. (Thus, row Mi of M represents the sum of the solution vectors in
which xi = 1, restricted to components xj for j ∈ P.) The value mii identifies the total number of
elite solutions in which xi = 1, and the value mij/mii represents the “conditional probability” that
xj = 1 in this subset of solutions. Because p can be controlled to be of modest size, as by the
choice of r and the number of solutions admitted to the elite set, the matrix M is not generally
highly expensive to create or maintain.

By means of the conditional probability interpretation, the entries of M give a basis for a variety
of analyses and choice rules for incorporating preferred attributes into new solutions. Once an
assignment xj = 1 is made in a solution currently under consideration (which may be either
partly or completely constructed), an updated conditional matrix M can be created by
restricting attention to elite solution vectors for which xj = 1. (Restricted updates of this form
can also be used for look-ahead purposes.) Weighted versions of M, whose entries additionally
reflect the quality of solutions in which specific assignments occur, likewise can be used.

Critical event memory provides a convenient mechanism to maintain appropriate variation
when conditional influences are taken into account. The “critical solutions” associated with
such memory in the present case are simply those constituting a selected subset of elite
solutions. Frequency measures for value assignments can be obtained by summing these
solution vectors for problems with 0-1 representations and the critical event control
mechanisms can then assure assignments are chosen to generate solutions that differ from
those of previous elite solutions.

Conditional analysis, independent of such memory structures, can also be a useful foundation
for generating solution fragments to be exploited by vocabulary building processes.

6.6 Referent-Domain Optimization

Referent-domain optimization is based on introducing one or more optimization models to
strategically restructure the problem or neighborhood, accompanied by auxiliary heuristic or
algorithmic process to map the solutions back to the original problem space. The optimization
models are characteristically devised to embody selected heuristic goals (e.g., of intensification,
diversification or both), within the context of particular classes of problems.

There are several ways to control the problem environment as a basis for applying
referent-domain optimization. A natural control method is to limit the structure and range of
parameters that define a neighborhood (or the rules used to navigate through a neighborhood),
and to create an optimization model that operates under these restricted conditions.

The examples that follow assume the approach starts from a current trial solution, which may
or may not be feasible. The steps described yield a new solution, and then the step is repeated,
using tabu search as a master guiding strategy to avoid cycling, and to incorporate
intensification and diversification.

Example 1. A heuristic selects k variables to change values, holding other variables constant.
An exact method determines the (conditionally) optimal new values of the k selected variables.

Example 2. A heuristic identifies a set of restrictive bounds that bracket the values of the
variables in the current trial solution (where the bounds may compel some variables to take on

Tabu Search 89

a single value). An exact method determines an optimal solution to the problem as modified to
include these bounds.

Example 3. A heuristic selects a restructured and exploitable region around the current
solution to search for an alternative solution. An exact method finds the best solution in this
region.

Example 4. For add/drop neighborhoods, a heuristic chooses k elements to add (or to drop).
For example, the heuristic may operate by both adding and dropping k specific elements, as in
k-opt moves for the TSP or k-swap moves for graph bipartitioning that add and drop k nodes.
Then, attention is restricted to consider only the subset of elements added or the subset of
elements dropped (and further restricted in the case of a bipartitioning problem to just one of
the two sets). Then an exact method identifies the remaining k elements to drop (or to add),
that will complete the move optimally.

Example 5. A heuristic chooses a modified problem formulation, that also admits the current
trial solution as a trial solution. (For example, the heuristic may relax some part of the
formulation and/or restrict another part.) An exact method then finds an optimal solution to
the modified formulation. An illustration occurs where a two phase exact algorithm first finds
an optimal solution to a relaxed portion of the problem, and then finds an optimal solution to a
restricted portion. Finally, a small part of the feasible region of the original problem close to or
encompassing this latter solution is identified, and an exact solution method finds an optimal
solution in this region.

Example 6. The use of specially constructed neighborhoods (and aggregations or partitions of
integer variables) permits the application of mixed integer programming (MIP) models to
identify the best options from all moves of depth at most k (or from associated collections of at
most k variables). When k is sufficiently small, such MIP models can be quite tractable, and
produce moves considerably more powerful than those provided by lower level heuristics.

Example 7. In problems with graph-related structures, the imposition of directionality or
non-looping conditions gives a basis for devising generalized shortest path (or dynamic
programming) models to generate moves that are optimal over a significant subclass of
possibilities. This type of approach gives rise to a combinatorial leverage phenomenon, where a
low order effort (e.g., linear or quadratic) can yield solutions that dominate exponential
numbers of alternatives. (See, e.g., Glover, 1992; Punnen and Glover, 1997: Rego and Glover,
2009.)

Example 8. A broadly applicable control strategy, similar to that of a relaxation procedure but
more flexible, is to create a proxy model that resembles the original problem of interest, and
which is easier to solve. Such an approach must be accompanied with a method to transform
the solution to the proxy model into a trial solution for the original problem. A version of such
an approach, which also induces special structure into the proxy model, can be patterned after
layered surrogate/Lagrangean decomposition strategies for mixed integer optimization.

Referent-domain optimization can also be applied in conjunction with target analysis to create
more effective solution strategies. In this case, a first stage learning model, based on controlled
solution attempts, identifies a set of desired properties of good solutions, together with target
solutions (or target regions) that embody these properties. Then a second stage model is
devised to generate neighborhoods and choice rules to take advantage of the outcomes of the
learning model. Useful strategic possibilities are created by basing these two models on a

90 Glover and Laguna

proxy model for referent-domain optimization, to structure the outcomes so that they may be
treated by one of the control methods indicated in the foregoing examples.

Conclusion

It is natural to be tempted to implement the most rudimentary forms of a method. More than a
few papers on tabu search examine only a small portion of the elements of short term memory,
and examine little or nothing at all of longer term memory. Unfortunately, in some cases these
papers also present themselves as embodying the essence of tabu search.

A factor that has reinforced the tendency to examine a limited part of tabu search (aside from
convenience, which can be sensible in early stages of an investigation), is that such a focus has
sometimes produced very appealing results. When reasonably decent outcomes can be found
without great effort, the motive to look further is diminished. The danger, of course, lies in
failing to discover significant gains that are likely to be achieved by a more complete approach.

It is appropriate to acknowledge that attention may be given to a limited subset of ideas from
an overall search framework for the following reasons:

(1) such a focus may help to uncover a better form for the strategies associated
with this subset.

(2) weaknesses of this subset, when studied in isolation from other ideas, may
stand out more clearly, thus yielding insights into the features of a more
complete approach that are required to produce a better method;

(3) for methods which are susceptible to highly "modular" implementations, as
typically occurs for tabu search, simpler designs can readily be made a part
of more complex designs.

Nevertheless, in many settings, tabu search implementations that incorporate a more
comprehensive set of its basic strategies typically perform appreciably better than
implementations that restrict consideration to a narrow set of such strategies.

A great deal remains to be learned about tabu search. Evidently, we also still know very little
about how we ourselves use memory in our problem solving. It is not inconceivable that
discoveries about effective uses of memory within our search methods will provide clues about
strategies that humans are adept at employing — or may advantageously be taught to employ.
The potential links between the areas of heuristic search and psychology have scarcely been
examined. Unquestionably, in the realm of optimization, we have not yet investigated the
strategic possibilities at a level that comes close to disclosing their full potential. The
numerous successes of tabu search implementations provide encouragement that such issues
are profitable to probe more fully. Some of the opportunities and challenges involved are
discussed in Glover (2007).

Recent fundamental advances in applications of tabu search have been assembled in a
collection of “Tabu Search Vignettes“ which can be accessed via the internet at
http://spot.colorado.edu/~glover. These include summaries of key developments in a variety of
areas, including:

Constraint Solving and Its Applications (Resource Assignment, Planning and
Timetabling, Integer Programming Feasibility, Satisfiability, Mobile Network
Frequency Assignment)

Tabu Search 91

Chemical Industry Applications (Computer Aided Molecular Design (CAMD), Heat
Exchanger Network (HEN) Synthesis, Phase Equilibrium Calculations, Gibbs Free
Energy Minimization, Optimal Component Lumping Problems)

Classification
Feature Selection
Satellite Range Scheduling
Maritime Transportation for International Trade
Conservation Area Network Design
High Level Synthesis
Graph Coloring
Delivery
Routing with Loading and Inventory Constraints
Heterogeneous Routing and Scheduling
Capacitated Facility Location
Multi-period Forest Harvesting
Manpower Scheduling
DNA Sequencing
Airline Disruption Management
Internet Traffic Engineering
Matrix Bandwidth Minimization
Generalized Assignment
Constraint Satisfaction (Work Shift Scheduling, Set-Covering and Nurse Scheduling)
Resource-Constrained Project Scheduling
Dynamic Optimization (Trade Market Prediction, Meteorological Forecast, Robotics

Motion Control)

Additional topics and references related to tabu search, including these vignettes, will also be
featured in the website http://www.tabusearch.info/ which is scheduled to debut in November
2012.

Cross-References

Algorithms and Metaheuristics for Combinitorial Matrices 00013
Binary Unconstrained Quadratic Optimization Problem 00015
Fuzzy Combinatorial Optimization Problems 00068
Neural Network Models in Combinatorial Optimization 00065

Recommended Reading

Ackley, D. (1987) “A Connectionist Model for Genetic Hillclimbing,” Kluwer, Dordrecht. Academic
Publishers.

Bäck, T., F. Hoffmeister and H. Schwefel (1991) “A Survey of Evolution Strategies,” Proceedings of the
Fourth International Conference on Genetic Algorithms, R. Belew and L. Booker (eds.), pp. 2-9.

Battiti, R. and G. Tecchiolli (1992) “Parallel Based Search for Combinatorial Optimization: Genetic
Algorithms and Tabu Search,” Microprocessor and Microsystems, Vol. 16, pp. 351-367.

Battiti, R. and G. Tecchiolli (1994a) “The Reactive Tabu Search,” ORSA Journal on Computing, Vol. 6, No.
2, pp. 126-140.

92 Glover and Laguna

Beyer, D. and R. Ogier (1991) “Tabu Learning: A Neural Network Search Method for Solving Nonconvex
Optimization Problems,” Proceedings of the International Conference in Neural Networks, IEEE and INNS,
Singapore.

Consiglio, A. and S.A. Zenios (1999) “Designing Portfolios of Financial Products via Integrated Simulation
and Optimization Models,” Operations Research, Vol. 47, No. 2, pp. 195-208.

Cung, V-D., T. Mautor, P. Michelon, A. Tavares (1996) “Scatter Search for the Quadratic Assignment
Problem,” Laboratoire PRiSM-CNRS URA 1525.

Davis, L. (1989) “Adapting Operator Probabilities in Genetic Algorithms,” Proceedings of the Third
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 61-69.

Eiben, A. E., P-E Raue and Zs. Ruttkay (1994) “Genetic Algorithms with Multi-Parent Recombination,”
Proceedings of the Third International Conference on Parallel Problem Solving from Nature (PPSN), Y.
Davidor, H-P Schwefel and R. Manner (eds.), New York: Springer-Verlag, pp. 78-87.

Eschelman, L. J. and J. D. Schaffer (1992) “Real-Coded Genetic Algorithms and Interval-Schemata,”
Technical Report, Phillips Laboratories.

Feo, T. and M. G. C. Resende (1989) “A probabilistic Heuristic for a Computationally Difficult Set Covering
Problem,” Operations Research Letters, Vol. 8, pp. 67-71.

Feo, T. and M. G. C. Resende (1995) “Greedy Randomized Adaptive Search Procedures,” Journal of Global
Optimization, Vol. 2, pp. 1-27.

Fleurent, C., F. Glover, P. Michelon and Z. Valli (1996) “A Scatter Search Approach for Unconstrained
Continuous Optimization,” Proceedings of the 1996 IEEE International Conference on Evolutionary
Computation, 643-648.

Freville, A. and G. Plateau (1986) “Heuristics and Reduction Methods for Multiple Constraint 0-1 Linear
Programming Problems,” European Journal of Operational Research, 24, 206-215.

Freville, A. and G. Plateau (1993) “An Exact Search for the Solution of the Surrogate Dual of the 0-1
Bidimensional Knapsack Problem,” European Journal of Operational Research, 68, 413-421.

Glover, F. (1963) “Parametric Combinations of Local Job Shop Rules,” Chapter IV, ONR Research
Memorandum no. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA.

Glover, F. (1968) “Surrogate Constraints,” Operations Research, 16, 741-749.

Glover, F. (1975) “Surrogate Constraint Duality in Mathematical Programming,” Operations Research, 23,
434-451.

Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate Constraints,” Decision Sciences,
Vol 8, No 1, 156-166.

Glover, F. (1989) “Tabu Search — Part I,” ORSA Journal on Computing, Vol. 1, pp. 190-206.

Glover, F. (1992) “Ejection Chains, Reference Structures and Alternating Path Methods for Traveling
Salesman Problems,” University of Colorado. Shortened version published in Discrete Applied
Mathematics, 1996, 65, 223-253.

Glover, F. (1994a) “Genetic Algorithms and Scatter Search: Unsuspected Potentials,” Statistics and
Computing, 4, 131-140.

Tabu Search 93

Glover, F. (1995a) “Scatter Search and Star-Paths: Beyond the Genetic Metaphor,” OR Spektrum, Vol. 17,
pp. 125-137.

Glover, F. (1997) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution: Lecture Notes
in Computer Science, 1363, J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers (Eds.), Springer, pp.
13-54.

Glover, F (2007) “Tabu Search – Uncharted Domains,” Annals of Operations Research, Vol. 149, No. 1, pp.
89-98.

Glover, F. and H. Greenberg (1989) “New Approaches for Heuristic Search: A Bilateral Linkage with
Artificial Intelligence,” European Journal of Operational Research, Vol. 39, No. 2, pp. 119-130.

Glover, F., J. P. Kelly and M. Laguna (1996) “New Advances and Applications of Combining Simulation
and Optimization,” Proceedings of the 1996 Winter Simulation Conference, J. M. Charnes, D. J. Morrice, D.
T. Brunner, and J. J. Swain (Eds.), 144-152.

Glover, F. and G. Kochenberger (1996) “Critical Event Tabu Search for Multidimensional Knapsack
Problems,” Meta-Heuristics: Theory and Applications, I. H. Osman and J. P. Kelly (eds.), Kluwer Academic
Publishers, pp. 407-427.

Glover, F., G. Kochenberger and B. Alidaee (1998) “Adaptive Memory Tabu Search for Binary Quadratic
Programs,” Management Science, Vol. 44, No. 3, pp. 336-345

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers.

Glover, F., M. Laguna and R. Marti (2000) "Fundamentals of Scatter Search and Path Relinking," Control
and Cybernetics, volume 29, number 3, pp. 653-684.

Glover, F., J. Mulvey, D. Bai, and M. Tapia (1998) “Integrative Population Analysis for Better Solutions to
Large-Scale Mathematical Programs,” Industrial Applications of Combinatorial Optimization, G. Yu, Ed.
Kluwer Academic Publishers, Boston, MA, pp. 212-237.

Greenberg, H. J. and Pierskalla, W.P. (1970) “Surrogate Mathematical Programs,” Operations Research,
18, 924-939.

Greenberg, H. J. and W. P. Pierskalla (1973) “Quasi-conjugate Functions and Surrogate Duality,” Cahiers
du Centre d'Etudes de Recherche Operationelle, Vol. 15, pp. 437-448.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI.

Johnson, D. S. (1990) “Local Optimization and the Traveling Salesman Problem,” Proc. 17th Intl.
Colloquium on Automata, Languages and Programming, pp. 446-460.

Karwan, M.H. and R.L. Rardin (1976) “Surrogate Dual Multiplier Search Procedures in Integer
Programming,” School of Industrial Systems Engineering, Report Series No. J-77-13, Georgia Institute of
Technology.

Karwan, M.H. and R.L. Rardin (1979) “Some Relationships Between Lagrangean and Surrogate Duality in
Integer Programming,” Mathematical Programming, 17, 230-334.

Kelly, J., B. Rangaswamy and J. Xu (1996) “A Scatter Search-Based Learning Algorithm for Neural
Network Training,” Journal of Heuristics, Vol. 2, pp. 129-146.

Laguna, M. (1997) “Optimizing Complex Systems with OptQuest,” Research Report, University of
Colorado

94 Glover and Laguna

Laguna, M., T. Feo and H. Elrod (1994) “A Greedy Randomized Adaptive Search Procedure for the 2-
Partition Problem,” Operations Research, Vol. 42, No. 4, pp. 677-687.

Laguna, M. and R. Marti (1999) “GRASP and Path Relinking for 2-Layer Straight Line Crossing
Minimization,” INFORMS Journal on Computing, Vol. 11, No. 1, pp. 44-52.

Laguna, M., R. Martí and V. Campos (1997) “Tabu Search with Path Relinking for the Linear Ordering
Problem,” Research Report, University of Colorado.

Laguna M., R. Marti and V. Valls (1997) “Arc Crossing Minimization in Hierarchical Digraphs with Tabu
Search,” Computers and Operations Research, Vol. 24, No. 12, pp. 1175-1186.

Lokketangen, A. K. Jornsten and S. Storoy (1994) “Tabu Search within a Pivot and Complement
Framework,” International Transactions in Operations Research, Vol. 1, No. 3, pp. 305-316.

Lokketangen, A. and F. Glover (1996) “Probabilistic Move Selection in Tabu Search for 0/1 Mixed Integer
Programming Problems,” Meta-Heuristics: Theory and Applications, I. H. Osman and J. P. Kelly (eds.),
Kluwer Academic Publishers, pp. 467-488.

Lokketangen, A. and Glover, F. (1997) “Surrogate Constraint Analysis — New Heuristics and Learning
Schemes for Satisfiability Problems,” Proceedings of the DIMACS workshop on Satisfiability Problems:
Theory and Applications, D-Z. Du, J. Gu and P. Pardalos (eds.).

Lourenco, H. R. and M. Zwijnenburg (1996) “Combining the Large-Step Optimization with Tabu Search:
Application to the Job Shop Scheduling Problem,” Meta-Heuristics: Theory and Applications, I. H. Osman
and J. P. Kelly (eds.), Kluwer Academic Publishers, pp. 219-236.

Martin, O., S. W. Otto and E. W. Felten (1991) “Large-Step Markov Chains for the Traveling Salesman
Problem,” Complex Systems, Vol. 5, No. 3, pp. 299-326.

Martin, O., S. W. Otto and E. W. Felten (1992) “Large-Step Markov Chains for TSP Incorporating Local
Search Heuristics,” Operations Research Letters, Vol. 11, No. 4, pp. 219-224.

Michalewicz, Z. and C. Janikow (1991) “Genetic Algorithms for Numerical Optimization,” Statistics and
Computing, Vol. 1, pp. 75-91.

Mühlenbein, H., M. Gorges-Schleuter, and O. Krämer (1988) “Evolution Algorithms in Combinatorial
Optimization,” Parallel Computing, Vol. 7, pp. 65-88.

Mühlenbein, H. and D. Schlierkamp-Voosen (1994) “The Science of Breeding and its Application to the
Breeder Genetic Algorithm,” Evolutionary Computation, Vol. 1, pp. 335-360.

Mühlenbein, H. and H-M Voigt (1996) “Gene Pool Recombination in Genetic Algorithms,” Meta-Heurisitics:
Theory and Applications, I. H. Osman and J. P. Kelly (eds.), Kluwer Academic Publishers, pp. 53-62.

Nonobe, K. and T. Ibaraki (1998) “A Tabu Search Approach for the Constraint Satisfaction Problem as a
General Problem Solver,” European Journal of Operational Research, Vol. 106, pp. 599-623.

Nonobe, K. and T. Ibaraki (2001) “An improved tabu search method for the weighted constraint satisfaction
problem, INFOR, Vol. 39, pp. 131–151.

Punnen, A. P. and F. Glover (1997) “Ejection Chains with Combinatorial Leverage for the Traveling
Salesman Problem,” Graduate School of Business, University of Colorado at Boulder.

Rana, S. and D. Whitley (1997) “Bit Representations with a Twist,” Proc. 7th International Conference on
Genetic Algorithms, T. Baeck ed. pp: 188-196, Morgan Kaufman.

Tabu Search 95

Rego, C. and F. Glover (2009) “Ejection chain and filter-and-fan methods in combinatorial optimization,”
Annals of Operations Research, Springer Science+Business Media, LLC 2009 DOI: DOI 10.1007/s10479-
009-0656-7.

Rochat, Y. and É. D. Taillard (1995) “Probabilistic diversification and intensification in local search for
vehicle routing”. Journal of Heuristics 1, pp. 147-167.

Spears, W.M. and K.A. DeJong (1991) “On the Virtues of Uniform Crossover,” 4th International
Conference on Genetic Algorithms, La Jolla, CA.

Taillard, É. D. (1996) “A heuristic column generation method for the heterogeneous VRP”, Publication
CRT-96-03, Centre de recherche sur les transports, Université de Montréal. To appear in RAIRO-OR.

Trafalis, T., and I. Al-Harkan (1995) “A Continuous Scatter Search Approach for Global Optimization,”
Extended Abstract in: Conference in Applied Mathematical Programming and Modeling (APMOD'95),
London, UK, 1995.

Ulder, N. L. J., E. Pech, P. J. M. van Laarhoven, H. J. Bandelt and E. H. L. Aarts (1991) “Genetic Local
Search Algorithm for the Traveling Salesman Problem,” Parallel Problem Solving from Nature, R. Maenner
and H. P. Schwefel (eds.), Springer-Verlag, Berlin, pp. 109-116.

De Werra, D. and A. Hertz (1989) “Tabu Search Techniques: A Tutorial and Applications to Neural
Networks,” OR Spectrum, Vol. 11, pp. 131-141.

Whitley, D., V. S. Gordon and K. Mathias (1994) “Lamarckian Evolution, the Baldwin Effect and Function
Optimization,” Proceedings of the Parallel Problem Solving from Nature, Vol. 3, New York: Springer-Verlag,
pp. 6-15.

Wright, A. H. (1990) “Genetic Algorithms for Real Parameter Optimization,” Foundations of Genetic
Algorithms, G. Rawlins (ed.), Morgan Kaufmann, Los Altos, CA, pp. 205-218.

Yamada, T. and C. Reeves (1997) “Permutation Flowshop Scheduling by Genetic Local Search,” 2nd
IEE/IEEE Int. Conf. on Genetic Algorithms in Engineering Systems (GALESIA ’97), pp. 232-238,
Glasglow, UK.

Yamada, T. and R. Nakano (1996) “Scheduling by Genetic Local Search with Multi-Step Crossover,” 4th
International Conference on Parallel Problem Solving from Nature, 960-969.

Zenios, S. (1996) “Dynamic Financial Modeling and Optimizing the Design of Financial Products,”
Presented at the National INFORMS Meeting, Washington, D.C.

