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Abstract 
 
Tabu Search, also called Adaptive Memory Programming, is a method for solving challenging 
problems in the field of optimization. The goal is to identify the best decisions or actions in 
order to maximize some measure of merit (such as maximizing profit, effectiveness, quality, 
social or scientific benefit), or to minimize some measure of demerit (cost, inefficiency, waste, 
social or scientific loss).  
 
Practical applications in optimization addressed by Tabu Search are exceedingly challenging 
and pervade the fields of business, engineering, economics and science. Everyday examples 
include problems in resource management, financial and investment planning, healthcare 
systems, energy and environmental policy, pattern classification, biotechnology and a host of 
other areas. The complexity and importance of such problems has motivated a wealth of 
academic and practical research throughout the past several decades, in an effort to discover 
methods that are able to find solutions of higher quality than many found in the past and 
capable of producing such solutions within feasible time limits or at reduced computational 
cost.  
 
Tabu search has emerged as one of the leading technologies for handling optimization 
problems that have proved difficult or impossible to solve with classical procedures that 
dominated the attention of textbooks and were considered the mainstays of available 
alternatives until recent times. A key feature of tabu search, underscored by its adaptive 
memory programming alias, is the use of special strategies designed to exploit adaptive 
memory. The idea is that an effective search for optimal solutions should involve a process of 
flexibly responding to the solution landscape in a manner that permits it to learn appropriate 
directions to take along with appropriate departures to explore new terrain. The adaptive 
memory feature of tabu search and allows the implementation of procedures that are capable 
of searching this terrain economically and effectively.  
 
                                                           
* The material of this chapter is in part adapted from the book Tabu Search, by Fred Glover and Manuel Laguna, 
Kluwer Academic Publishers, 1997. 
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Introduction 

 
Faced with the challenge of solving hard optimization problems that abound in the real world, 
classical methods often encounter great difficulty.  Vitally important applications in business, 
engineering, economics and science cannot be tackled with any reasonable hope of success, 
within practical time horizons, by solution methods that have been the predominant focus of 
academic research throughout the past three decades (and which are still the focus of many 
textbooks). 
 
The meta-heuristic approach called tabu search (TS) is dramatically changing our ability to 
solve problems of practical significance.  Current applications of TS span the realms of 
resource planning, telecommunications, VLSI design, financial analysis, scheduling, space 
planning, energy distribution, molecular engineering, logistics, pattern classification, flexible 
manufacturing, waste management, mineral exploration, biomedical analysis, environmental 
conservation and scores of others.  In recent years, journals in a wide variety of fields have 
published tutorial articles and computational studies documenting successes by tabu search 
in extending the frontier of problems that can be handled effectively — yielding solutions whose 
quality often significantly surpasses that obtained by methods previously applied.  Table 1.1 
gives a partial catalog of example applications.  A more comprehensive list, including summary 
descriptions of gains achieved from practical implementations, can be found in Glover and 
Laguna, 1997.  Recent TS developments and applications can also be found in the Tabu Search 
Vignettes section of the web page http://spot.colorado.edu/~glover. 
 
 

Main Text 

1.  Tabu Search Features and Relevance 

A distinguishing feature of tabu search is embodied in its exploitation of adaptive forms of 
memory, which equips it to penetrate complexities that often confound alternative approaches.  
Yet we are only beginning to tap the rich potential of adaptive memory strategies, and the 
discoveries that lie ahead promise to be as important and exciting as those made to date.  The 
knowledge and principles that have emerged from the TS framework give a foundation to create 
practical systems whose capabilities markedly exceed those available earlier.  At the same time, 
there are many untried variations that may lead to further advances.  A conspicuous feature of 
tabu search is that it is dynamically growing and evolving, drawing on important contributions 
by many researchers. 
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Table 1.1.  Illustrative tabu search applications. 

Scheduling 
 Flow-Time Cell Manufacturing 
 Heterogeneous Processor Scheduling 
 Workforce Planning 
 Classroom Scheduling 
 Machine Scheduling 
 Flow Shop Scheduling 
 Job Shop Scheduling 
 Sequencing and Batching 

Telecommunications 
 Call Routing 
 Bandwidth Packing 
 Hub Facility Location 
 Path Assignment 
 Network Design for Services 
 Customer Discount Planning 
 Failure Immune Architecture 
 Synchronous Optical Networks 

Design 
 Computer-Aided Design 
 Fault Tolerant Networks 
 Transport Network Design 
 Architectural Space Planning 
 Diagram Coherency 
 Fixed Charge Network Design 
 Irregular Cutting Problems 

Production, Inventory and Investment 
 Flexible Manufacturing  
 Just-in-Time Production 
 Capacitated MRP 
 Part Selection 
 Multi-item Inventory Planning 
 Volume Discount Acquisition 
 Fixed Mix Investment 

Location and Allocation 
 Supply Chain Analysis 
           Multicommodity Location/Allocation 
 Quadratic Assignment 
 Quadratic Semi-Assignment 
 Multilevel Generalized Assignment 
 Lay-Out Planning 
 Off-Shore Oil Exploration 

Routing 
 Vehicle Routing 
 Capacitated Routing 
 Time Window Routing 
 Multi-Mode Routing 
 Mixed Fleet Routing 
 Traveling Salesman 
 Traveling Purchaser 

Logic and Artificial Intelligence 
 Maximum Satisfiability 
 Probabilistic Logic 
 Clustering 
 Pattern Recognition/Classification 
 Data Integrity 
 Neural Network |Training and Design 

Graph Optimization 
 Graph Partitioning 
 Graph Coloring 
 Clique Partitioning 
 Maximum Clique Problems 
 Maximum Planner Graphs 
 P-Median Problems 

Technology 
 Seismic Inversion 
 Electrical Power Distribution 
 Engineering Structural Design 
 Coordination of Energy Resources 
 Space Station Construction 
 DNA Sequencing 
           Circuit Cell Placement 
           Computer Aided Molecular Design 

General Combinational Optimization 
 Zero-One Programming 
 Fixed Charge Optimization 
 Nonconvex Nonlinear Programming 
 All-or-None Networks 
 Bilevel Programming 
           Multi-objective Discrete Optimization 
           Hyperplane Splitting 
 General Mixed Integer Optimization 

 

1.1  General Tenets 

The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the 
aborigines of Tonga island to indicate things that cannot be touched because they are sacred.  
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According to Webster's Dictionary, the word now also means “a prohibition imposed by social 
custom as a protective measure" or of something "banned as constituting a risk.”  These 
current more pragmatic senses of the word accord well with the theme of tabu search.  The risk 
to be avoided in this case is that of following a counter-productive course, including one which 
may lead to entrapment without hope of escape.  On the other hand, as in the broader social 
context where “protective prohibitions” are capable of being superseded when the occasion 
demands, the “tabus” of tabu search are to be overruled when evidence of a preferred 
alternative becomes compelling.  
 
The most important association with traditional usage, however, stems from the fact that tabus 
as normally conceived are transmitted by means of a social memory which is subject to 
modification over time.  This creates the fundamental link to the meaning of "tabu" in tabu 
search.  The forbidden elements of tabu search receive their status by reliance on an evolving 
memory, which allows this status to shift according to time and circumstance. 
 
More particularly, tabu search is based on the premise that problem solving, in order to qualify 
as intelligent, must incorporate adaptive memory and responsive exploration.  The adaptive 
memory feature of TS allows the implementation of procedures that are capable of searching 
the solution space economically and effectively.  Since local choices are guided by information 
collected during the search, TS contrasts with memoryless designs that heavily rely on 
semirandom processes that implement a form of sampling.  Examples of memoryless methods 
include semigreedy heuristics and the prominent “genetic” and “annealing” approaches 
inspired by metaphors of physics and biology.  Adaptive memory also contrasts with rigid 
memory designs typical of branch and bound strategies.  (It can be argued that some types of 
evolutionary procedures that operate by combining solutions, such as genetic algorithms, 
embody a form of implicit memory.  Special links with evolutionary methods, and implications 
for establishing more effective variants of them, are discussed in Section 5.) 
 
The emphasis on responsive exploration in tabu search, whether in a deterministic or 
probabilistic implementation, derives from the supposition that a bad strategic choice can yield 
more information than a good random choice.  In a system that uses memory, a bad choice 
based on strategy can provide useful clues about how the strategy may profitably be changed.  
(Even in a space with significant randomness a purposeful design can be more adept at 
uncovering the imprint of structure.) 
 
Responsive exploration integrates the basic principles of intelligent search, i.e., exploiting good 
solution features while exploring new promising regions.  Tabu search is concerned with 
finding new and more effective ways of taking advantage of the mechanisms associated with 
both adaptive memory and responsive exploration.  The development of new designs and 
strategic mixes makes TS a fertile area for research and empirical study. 

1.2  Use of Memory 

The memory structures in tabu search operate by reference to four principal dimensions, 
consisting of recency, frequency, quality, and influence (Figure 1.1).  Recency-based and 
frequency-based based memory complement each other, and have important characteristics we 
amplify in later sections.  The quality dimension refers to the ability to differentiate the merit of 
solutions visited during the search.  In this context, memory can be used to identify elements 
that are common to good solutions or to paths that lead to such solutions.  Operationally, 
quality becomes a foundation for incentive-based learning, where inducements are provided to 
reinforce actions that lead to good solutions and penalties are provided to discourage actions 
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that lead to poor solutions.  The flexibility of these memory structures allows the search to be 
guided in a multi-objective environment, where the goodness of a particular search direction 
may be determined by more than one function.  The tabu search concept of quality is broader 
than the one implicitly used by standard optimization methods. 
 

 
The fourth dimension, influence, considers the impact of the choices made during the search, 
not only on quality but also on structure.  (In a sense, quality may be regarded as a special 
form of influence.)  Recording information about the influence of choices on particular solution 
elements incorporates an additional level of learning.  By contrast, in branch and bound, for 
example, the separation rules are prespecified and the branching directions remain fixed, once 
selected, at a given node of a decision tree.  It is clear however that certain decisions have more 
influence than others as a function of the neighborhood of moves employed and the way that 
this neighborhood is negotiated (e.g., choices near the root of a branch and bound tree are 
quite influential when using a depth-first strategy).  The assessment and exploitation of 
influence by a memory more flexible than embodied in such tree searches is an important 
feature of the TS framework. 
 
The memory used in tabu search is both explicit and attributive.  Explicit memory records 
complete solutions, typically consisting of elite solutions visited during the search.  An 
extension of this memory records highly attractive but unexplored neighbors of elite solutions.  
The memorized elite solutions (or their attractive neighbors) are used to expand the local 
search, as indicated in Section 3.  In some cases explicit memory has been used to guide the 
search and avoid visiting solutions more than once.  This application is limited, because clever 
data structures must be designed to avoid excessive memory requirements. 
 
Alternatively, TS uses attributive memory for guiding purposes.  This type of memory records 
information about solution attributes that change in moving from one solution to another.  For 
example, in a graph or network setting, attributes can consist of nodes or arcs that are added, 
dropped or repositioned by the moving mechanism.  In production scheduling, the index of jobs 
may be used as attributes to inhibit or encourage the method to follow certain search 
directions. 

1.3  Intensification and Diversification 

Two highly important components of tabu search are intensification and diversification 
strategies.  Intensification strategies are based on modifying choice rules to encourage move 

Fig. 1.1  Four TS dimensions. 

Quality Influence

Recency Frequency
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combinations and solution features historically found good.  They may also initiate a return to 
attractive regions to search them more thoroughly.  Since elite solutions must be recorded in 
order to examine their immediate neighborhoods, explicit memory is closely related to the 
implementation of intensification strategies.  As Figure 1.2 illustrates, the main difference 
between intensification and diversification is that during an intensification stage the search 
focuses on examining neighbors of elite solutions. 
 

 
Here the term “neighbors” has a broader meaning than in the usual context of “neighborhood 
search.”  That is, in addition to considering solutions that are adjacent or close to elite 
solutions by means of standard move mechanisms, intensification strategies generate 
“neighbors” by either grafting together components of good solution or by using modified 
evaluation strategies that favor the introduction of such components into a current (evolving) 
solution.  The diversification stage on the other hand encourages the search process to 
examine unvisited regions and to generate solutions that differ in various significant ways from 
those seen before.  Again, such an approach can be based on generating subassemblies of 
solution components that are then “fleshed out” to produce full solutions, or can rely on 
modified evaluations as embodied, for example, in the use of penalty / incentive functions. 
 
Intensification strategies require a means for identifying a set of elite solutions as basis for 
incorporating good attributes into newly created solutions.  Membership in the elite set is often 
determined by setting a threshold which is connected to the objective function value of the best 
solution found during the search.  However, considerations of clustering and “anti-clustering” 
are also relevant for generating such a set, and more particularly for generating subsets of  
solutions that may be used for specific phases of intensification and diversification.  In the 
following sections, we show how the treatment of such concerns can be enhanced by making 
use of special memory structures.  The TS notions of intensification and diversification are 
beginning to find their way into other meta-heuristics, and it is important to keep in mind (as 
we subsequently demonstrate) that these ideas are somewhat different than the old control 
theory concepts of “exploitation” and “exploration,” especially in their implications for 
developing effective problem solving strategies. 

2.  Tabu Search Foundations and Short Term Memory 

Tabu search can be applied directly to verbal or symbolic statements of many kinds of decision 
problems, without the need to transform them into mathematical formulations.  Nevertheless, 
it is useful to introduce mathematical notation to express a broad class of these problems, as a 
basis for describing certain features of tabu search.  We characterize this class of problems as 

Fig. 1.2  Intensification and diversification. 
 

 
Unvisited solutions Neighbors of

elite solutions
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that of optimizing (minimizing or maximizing) a function f(x) subject to x ∈X , where f(x) may be 
linear or nonlinear, and the set X summarizes constraints on the vector of decision variables x.  
The constraints may include linear or nonlinear inequalities, and may compel all or some 
components of x to receive discrete values.  While this representation is useful for discussing a 
number of problem solving considerations, we emphasize again that in many applications of 
combinatorial optimization, the problem of interest may not be easily formulated as an 
objective function subject to a set of constraints.  The requirement x ∈X , for example, may 
specify logical conditions or interconnections that would be cumbersome to formulate 
mathematically, but may be better be left as verbal stipulations that can be then coded as 
rules. 
 
Tabu search begins in the same way as ordinary local or neighborhood search, proceeding 
iteratively from one point (solution) to another until a chosen termination criterion is satisfied.  
Each x ∈X  has an associated neighborhood ( )N Xx ⊂ , and each solution ( )′ ∈x xN  is reached 
from x by an operation called a move. 
 
As an initial point of departure, we may contrast TS with a simple descent method where the 
goal is to minimize f(x) (or a corresponding ascent method where the goal is to maximize f(x)).  
Such a method only permits moves to neighbor solutions that improve the current objective 
function value and ends when no improving solutions can be found.  A pseudo-code of a 
generic descent method is presented in Figure 2.1.  The final x obtained by a descent method is 
called a local optimum, since it is at least as good or better than all solutions in its 
neighborhood.  The evident shortcoming of a descent method is that such a local optimum in 
most cases will not be a global optimum, i.e., it usually will not minimize f(x) over all x ∈X . 
 

 
The version of a descent method called steepest descent scans the entire neighborhood of x in 
search of a neighbor solution ′x  that gives a smallest ( )f x ′  value over ( )′ ∈x xN .  Steepest 
descent implementations of some types of solution approaches (such as certain path 
augmentation algorithms in networks and matroids) are guaranteed to yield globally optimal 
solutions for the problems they are designed to handle, while other forms of descent may 
terminate with local optima that are not global optima.  In spite of this attractive feature, in 
certain settings steepest descent is sometimes impractical because it is computationally too 
expensive, as where N(x) contains many elements or each element is costly to retrieve or 
evaluate.  Still, it is often valuable to choose an ′x  at each iteration that yields a “good” if not 
smallest ( )f x ′  value. 
 
The relevance of choosing good solutions from current neighborhoods is magnified when the 
guidance mechanisms of tabu search are introduced to go beyond the locally optimal 
termination point of a descent method.  Thus, an important first level consideration for tabu 
search is to determine an appropriate candidate list strategy for narrowing the examination of 

Fig. 2.1  Descent method. 
 
1) Choose x ∈X  to start the process. 
2) Find ( )′ ∈x xN  such that ( ) ( )f x f x′ < . 
3) If no such ′x  can be found, x is the local 

optimum and the method stops. 
4) Otherwise, designate ′x  to be the new x and 

go to 2). 
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elements of N(x), in order to achieve an effective tradeoff between the quality of x′ and the effort 
expended to find it.  Here quality may involve considerations beyond those narrowly reflected 
by the value of ( )f x ′ .  If a neighborhood space is totally random, then of course nothing will 
work better than a totally random choice.  (In such a case there is no merit in trying to devise 
an effective solution procedure.)  Assuming that neighborhoods can be identified that are 
reasonably meaningful for a given class of problems, the challenge is to define solution quality 
appropriately so that evaluations likewise will have meaning.  By the TS orientation, the ability 
to use history in creating such evaluations then becomes important for devising effective 
methods  
 
To give a foundation for understanding the basic issues involved, we turn our attention to the 
following illustrative example, which will also be used as a basis for illustrating various aspects 
of tabu search in later sections. 

2.1  Memory and Tabu Classifications 

An important distinction in TS arises by differentiating between short term memory and longer 
term memory.  Each type of memory is accompanied by its own special strategies.  However, 
the effect of both types of memory may be viewed as modifying the neighborhood N(x) of the 
current solution x.  The modified neighborhood, which we denote by N*(x), is the result of 
maintaining a selective history of the states encountered during the search. 
 
In the TS strategies based on short term considerations, N*(x) characteristically is a subset of 
N(x), and the tabu classification serves to identify elements of N(x) excluded from N*(x).  In TS 
strategies that include longer term considerations, N*(x) may also be expanded to include 
solutions not ordinarily found in N(x).  Characterized in this way, TS may be viewed as a 
dynamic neighborhood method.  This means that the neighborhood of x is not a static set, but 
rather a set that can change according to the history of the search.  This feature of a 
dynamically changing neighborhood also applies to the consideration of selecting different 
component neighborhoods from a compound neighborhood that encompasses multiple types or 
levels of moves, and provides an important basis for parallel processing.  Characteristically, a 
TS process based strictly on short term strategies may allow a solution x to be visited more 
than once, but it is likely that the corresponding reduced neighborhood N*(x) will be different 
each time.  With the inclusion of longer term considerations, the likelihood of duplicating a 
previous neighborhood upon revisiting a solution, and more generally of making choices that 
repeatedly visit only a limited subset of X, is all but nonexistent.  From a practical standpoint, 
the method will characteristically identify an optimal or near optimal solution long before a 
substantial portion of X is examined. 
 
A crucial aspect of TS involves the choice of an appropriate definition of N*(x).  Due to the 
exploitation of memory, N*(x) depends upon the trajectory followed in moving from one solution 
to the next (or upon a collection of such trajectories in a parallel processing environment).  
 
The approach of storing complete solutions (explicit memory) generally consumes an enormous 
amount of space and time when applied to each solution generated.  A scheme that emulates 
this approach with limited memory requirements is given by the use of hash functions.  (Also, 
as will be seen, explicit memory has a valuable role when selectively applied in strategies that 
record and analyze certain “special” solutions.)  Regardless of the implementation details, short 
term memory functions provide one of the important cornerstones of the TS methodology.  
These functions give the search the opportunity to continue beyond local optima, by allowing 
the execution of nonimproving moves coupled with the modification of the neighborhood 
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structure of subsequent solutions.  However, instead of recording full solutions, these memory 
structures are generally based on recording attributes (attributive memory).  In addition, short 
term memory is often based on the most recent history of the search trajectory. 

2.2  Recency-Based Memory 

The most commonly used short term memory keeps track of solutions attributes that have 
changed during the recent past, and is called recency-based memory.  This is the kind of 
memory that is included in most short descriptions of tabu search in the literature (although a 
number of its aspects are often left out by popular summaries). 
 
To exploit this memory, selected attributes that occur in solutions recently visited are labeled 
tabu-active, and solutions that contain tabu-active elements, or particular combinations of 
these attributes, are those that become tabu.  This prevents certain solutions from the recent 
past from belonging to N*(x) and hence from being revisited.  Other solutions that share such 
tabu-active attributes are also similarly prevented from being visited.  Note that while the tabu 
classification strictly refers to solutions that are forbidden to be visited, by virtue of containing 
tabu-active attributes (or more generally by violating certain restriction based on these 
attributes), we also often refer to moves that lead to such solutions as being tabu.  We 
illustrate these points with the following example. 
 
Minimum k-Tree Problem Example 
 
The Minimum k-Tree problem seeks a tree consisting of k edges in a graph so that the sum of 
the weights of these edges is minimum (Lokketangen, et al. 1994).  An instance of this problem 
is given in Figure 2.2, where nodes are shown as numbered circles, and edges are shown as 
lines that join pairs of nodes (the two “endpoint” nodes that determine the edge).  Edge weights 
are shown as the numbers attached to these lines.  A tree is a set of edges that contains no 
cycles, i.e., that contains no paths that start and end at the same node (without retracing any 
edges). 
 

 
Assume that the move mechanism is defined by edge-swapping, as subsequently described, 
and that a greedy procedure is used to find an initial solution.  The greedy construction starts 
by choosing the edge (i, j) with the smallest weight in the graph, where i and j are the indexes of 
the nodes that are the endpoints of the edge.  The remaining k-1 edges are chosen successively 

Fig. 2.2  Weighted undirected graph. 
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to minimize the increase in total weight at each step, where the edges considered meet exactly 
one node from those that are endpoints of edges previously chosen.  For k = 4, the greedy 
construction performs the steps in Table 2.1. 
 

Table 2.1  Greedy construction. 

Step Candidates Selection Total Weight 

1 (1,2) (1,2)  1 

2 (1,4), (2,3) (1,4)  26 

3 (2,3), (3,4), (4,6), (4,7) (4,7)  34 

4 (2,3), (3,4), (4,6), (6,7), (7,8) (6,7)  40 

 
The construction starts by choosing edge (1,2) with a weight of 1 (the smallest weight of any 
edge in the graph).  After this selection, the candidate edges are those that connect the nodes 
in the current partial tree with those nodes not in the tree (i.e., edges (1,4) and (2,3)).  Since 
edge (1,4) minimizes the weight increase, it is chosen to be part of the partial solution.  The 
rest of the selections follow the same logic, and the construction ends when the tree consists of 
4 edges (i.e., the value of k).  The initial solution in this particular case has a total weight of 40. 
 
The swap move mechanism, which is used from this point onward, replaces a selected edge in 
the tree by another selected edge outside the tree, subject to requiring that the resulting 
subgraph is also a tree.  There are actually two types of such edge swaps, one that maintains 
the current nodes of the tree unchanged (static) and one that results in replacing a node of the 
tree by a new node (dynamic).  Figure 2.3 illustrates the best swap of each type that can be 
made starting from the greedy solution.  The added edge in each case is shown by a heavy line 
and the dropped edge is shown by a dotted line. 
 
The best move of both types is the static swap of Figure 2.3, where for our present illustration 
we are defining best solely in terms of the change on the objective function value.  Since this 
best move results in an increase of the total weight of the current solution, the execution of 
such move abandons the rules of a descent approach and sets the stage for a tabu search 
process.  (The feasibility restriction that requires a tree to be produced at each step is 
particular to this illustration, since in general the TS methodology may include search 
trajectories that violate various types of feasibility conditions.) 



Tabu Search 11 

 

 
Given a move mechanism, such as the swap mechanism we have selected for our example, the 
next step is to choose the key attributes that will be used for the tabu classification.  Tabu 
search is very flexible at this stage of the design.  Problem-specific knowledge can be used as 
guidance to settle on a particular design.  In problems where the moves are defined by adding 
and deleting elements, the labels of these elements can be used as the attributes for enforcing 
tabu status.  Here, in the present example, we can simply refer to the edges as attributes of the 
move, since the condition of being in or out of the tree (which is a distinguishing property of the 
current solution) may be assumed to always be automatically known by a reasonable solution 
representation. 
 
Choosing Tabu Classifications 
 
Tabu classifications do not have to be symmetric, that is, the tabu structure can be designed to 
treat added and dropped elements differently.  Suppose for example that after choosing the 
static swap of Figure 2.3, which adds edge (4,6) and drops edge (4,7), a tabu status is assigned 
to both of these edges.  Then one possibility is to classify both of these edges tabu-active for the 
same number of iterations.  The tabu-active status has different meanings depending on 
whether the edge is added or dropped.  For an added edge, tabu-active means that this edge is 
not allowed to be dropped from the current tree for the number of iterations that defines its 
tabu tenure.  For a dropped edge, on the other hand, tabu-active means the edge is not allowed 
to be included in the current solution during its tabu tenure.  Since there are many more edges 
outside the tree than in the tree, it seems reasonable to implement a tabu structure that keeps 
a recently dropped edge tabu-active for a longer period of time than a recently added edge.  
Notice also that for this problem the tabu-active period for added edges is bounded by k, since 
if no added edge is allowed to be dropped for k iterations, then within k steps all available 
moves will be classified tabu. 
 
The concept of creating asymmetric tabu classifications can be readily applied to settings 
where add/drop moves are not used. 
 

Fig. 2.3  Swap move types. 
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Illustrative Tabu Classifications for the Min k-Tree Problem 
 
As previously remarked, the tabu-active classification may in fact prevent the search from 
visiting solutions that have not been examined yet.  We illustrate this phenomenon as follows.  
Suppose that in the Min k-Tree problem instance of Figure 2.2, dropped edges are kept tabu-
active for 2 iterations, while added edges are kept tabu-active for only one iteration.  (The 
number of iterations an edge is kept tabu-active is called the tabu tenure of the edge.)  Also 
assume that we define a swap move to be tabu if either its added or dropped edge is tabu-
active.  If we examine the full neighborhood of available edge swaps at each iteration, and 
always choose the best that is not tabu, then the first three moves are as shown in Table 2.2 
below (starting from the initial solution found by the greedy construction heuristic).  The move 
of iteration 1 is the static swap move previously identified in Figure 2.3.  Diagrams showing the 
successive trees generated by these moves, starting with the initial greedy solution, are given in 
Figure 2.4. 
 

Table 2.2  TS iterations. 

Iteration Tabu-active net tenure Add Drop Weight 

 1 2    

1   (4,6) (4,7) 47 

2 (4,6) (4,7) (6,8) (6,7) 57 

3 (6,8), (4,7) (6,7) (8,9) (1,2) 63 

 
The net tenure values of 1 and 2 in Table 2.2 for the currently tabu-active edges indicate the 
number of iterations that these edges will remain tabu-active (including the current iteration). 
 

 
At iteration 2, the reversal of the move of iteration 1 (that is, the move that now adds (4,7) and 
drops (4,6)) is clearly tabu, since both of its edges are tabu-active at iteration 2.  In addition, 
the move that adds (4,7) and drops (6,7) is also classified tabu, because it contains the tabu-

Fig. 2.4  Effects of attributive short term memory. 
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active edge (4,7) (with a net tenure of 2).  This move leads to a solution with a total weight of 
49, a solution that clearly has not been visited before (see Figure 2.4).  The tabu-active 
classification of (4,7) has modified the original neighborhood of the solution at iteration 2, and 
has forced the search to choose a move with an inferior objective function value (i.e., the one 
with a total weight of 57).  In this case, excluding the solution with a total weight of 49 has 
little effect on the quality of the best solution found (since we have already obtained one with a 
weight of 40). 
 
In other situations, however, additional precautions must be taken to avoid missing good 
solutions.  These strategies are known as aspiration criteria and are the subject of Section 2.6.  
For the moment we observe simply that if the tabu solution encountered at the current step 
instead had a weight of 39, which is better than the best weight of 40 so far seen, then we 
would allow the tabu classification of this solution to be overridden and consider the solution 
admissible to be visited.  The aspiration criterion that applies in this case is called the 
improved-best aspiration criterion.  (It is important to keep in mind that aspiration criteria do 
not compel particular moves to be selected, but simply make them available, or alternately 
rescind evaluation penalties attached to certain tabu classifications.) 
 
One other comment about tabu classification deserves to be made at this point.  In our 
preceding discussion of the Min k-Tree problem we consider a swap move tabu if either its 
added edge or its dropped edge is tabu-active.  However, we could instead stipulate that a swap 
move is tabu only if both its added and dropped edges are tabu-active.  In general, the tabu 
status of a move is a function of the tabu-active attributes of the move (i.e., of the new solution 
produced by the move). 

2.3  A First Level Tabu Search Approach 

We now have on hand enough ingredients for a first level tabu search procedure.  Such a 
procedure is sometimes implemented in an initial phase of a TS development to obtain a 
preliminary idea of performance and calibration features, or simply to provide a convenient 
staged approach for the purpose of debugging solution software.  While this naive form of a TS 
method omits a number of important short term memory considerations, and does not yet 
incorporate longer term concerns, it nevertheless gives a useful starting point for 
demonstrating several basic aspects of tabu search. 
 
We start from the solution with a weight of 63 as shown previously in Figure 2.4 which was 
obtained at iteration 3.  At each step we select the least weight non-tabu move from those 
available, and use the improved-best aspiration criterion to allow a move to be considered 
admissible in spite of leading to a tabu solution.  The reader may verify that the outcome leads 
to the series of solutions shown in Table 2.3, which continues from iteration 3, just executed.  
For simplicity, we select an arbitrary stopping rule that ends the search at iteration 10. 
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Table 2.3  Iterations of a first level TS procedure. 

Iteration Tabu-active net tenure Add Drop Move Weight 

 1 2   Value  

3 (6,8), (4,7) (6,7) (8,9) (1,2) 6 63 

4 (6,7), (8,9) (1,2) (4,7) (1,4) -17 46 

5 (1,2), (4,7) (1,4) (6,7) (4,6) -9 37* 

6 (1,4), (6,7) (4,6) (6,9) (6,8) 0 37 

7 (4,6), (6,9) (6,8) (8,10) (4,7) 1 38 

8 (6,8), (8,10) (4,7) (9,12) (6,7) 3 41 

9 (4,7), (9,12) (6,7) (10,11) (6,9) -7 34* 

10 (6,7), (10,11) (6,9) (5,9) (9,12) 7 41 

 
The successive solutions identified in Table 2.3 are shown graphically in Figure 2.5 below.  In 
addition to identifying the dropped edge at each step as a dotted line, we also identify the 
dropped edge from the immediately preceding step as a dotted line which is labeled 2*, to 
indicate its current net tabu tenure of 2.  Similarly, we identify the dropped edge from one 
further step back by a dotted line which is labeled 1*, to indicate its current net tabu tenure of 
1.  Finally, the edge that was added on the immediately preceding step is also labeled 1* to 
indicate that it likewise has a current net tabu tenure of 1.  Thus the edges that are labeled 
with tabu tenures are those which are currently tabu-active, and which are excluded from 
being chosen by a move of the current iteration (unless permitted to be chosen by the 
aspiration criterion). 
 
As illustrated in Table 2.3 and Figure 2.5 the method continues to generate different solutions, 
and over time the best known solution (denoted by an asterisk) progressively improves.  In fact, 
it can be verified for this simple example that the solution obtained at iteration 9 is optimal.  
(In general, of course, there is no known way to verify optimality in polynomial time for difficult 
discrete optimization problems, i.e., those that fall in the class called NP-hard.  The Min k-Tree 
problem is one of these.) 
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It may be noted that at iteration 6 the method selected a move with a move value of zero.  
Nevertheless, the configuration of the current solution changes after the execution of this 
move, as illustrated in Figure 2.5. 
 
The selection of moves with certain move values, such as zero move values, may be 
strategically controlled, to limit their selection as added insurance against cycling in special 
settings.  We will soon see how considerations beyond this first level implementation can lead 
to an improved search trajectory, but the non-monotonic, gradually improving, behavior is 
characteristic of TS in general.  Figure 2.6 provides a graphic illustration of this behavior for 
the current example. 
 

Fig. 2.5  Graphical representation of TS iterations. 
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We have purposely chosen the stopping iteration to be small to illustrate an additional relevant 
feature, and to give a foundation for considering certain types of longer term considerations.  
One natural way to apply TS is to periodically discontinue its progress, particularly if its rate of 
finding new best solutions  falls below a preferred level, and to restart the method by a process 
designated to generate a new sequence of solutions. 
 
Classical restarting procedures based on randomization evidently can be used for this purpose, 
but TS often derives an advantage by employing more strategic forms of restarting.  We 
illustrate a simple instance of such a restarting procedure, which also serves to introduce a 
useful memory concept. 
 
2.3.1 Critical Event Memory 

Critical Event memory in tabu search, as its name implies, monitors the occurrence of certain 
critical events during the search, and establishes a memory that constitutes an aggregate 
summary of these events.  For our current example, where we seek to generate a new starting 
solution, a critical event that is clearly relevant is the generation of the previous starting 
solution.  Correspondingly, if we apply a restarting procedure multiple times, the steps of 
generating all preceding starting solutions naturally qualify as critical events.  That is, we 
would prefer to depart from these solutions in some significant manner as we generate other 
starting solutions. 
 
Different degrees of departure, representing different levels of diversification, can be achieved 
by defining solutions that correspond to critical events in different ways (and by activating 
critical event memory by different rules).  In the present setting we consider it important that 
new starting solutions not only differ from preceding starting solutions, but that they also differ 
from other solutions generated during previous passes.  One possibility is to use a blanket 
approach that considers each complete solution previously generated to represent a critical 
event.  The aggregation of such events by means of critical event memory makes this entirely 

Fig. 2.6  TS search trajectory. 
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practicable, but often it is quite sufficient (and, sometimes preferable) to isolate a smaller set of 
solutions. 
 
For the current example, therefore, we will specify that the critical events of interest consist of 
generating not only the starting solution of the previous pass(es), but also each subsequent 
solution that represents a “local TS optimum,” i.e. whose objective function value is better (or 
no worse) than that of the solution immediately before and after it.  Using this simple definition 
we see that four solutions qualify as critical (i.e., are generated by the indicated critical events) 
in the first solution pass of our example: the initial solution and the solutions found at 
iterations 5, 6 and 9 (with weights of 40, 37, 37 and 34, respectively). 
 
Since the solution at iteration 9 happens to be optimal, we are interested in the effect of 
restarting before this solution is found.  Assume we had chosen to restart after iteration 7, 
without yet reaching an optimal solution.  Then the solutions that correspond to critical events 
are the initial solution and the solutions of iterations 5 and 6.  We treat these three solutions 
in aggregate by combining their edges, to create a subgraph that consists of the edges (1,2), 
(1,4), (4,7), (6,7), (6,8), (8,9) and (6,9).  (Frequency-based memory, as discussed in Section 4, 
refines this representation by accounting for the number of times each edge appears in the 
critical solutions, and allows the inclusion of additional weighting factors.) 
 
To execute a restarting procedure, we penalize the inclusion of the edges of this subgraph at 
various steps of constructing the new solution.  It is usually preferable to apply this penalty 
process at early steps, implicitly allowing the penalty function to decay rapidly as the number 
of steps increases.  It is also sometimes useful to allow one or more intervening steps after 
applying such penalties before applying them again. 
 
For our illustration, we will use the memory embodied in the subgraph of penalized edges by 
introducing a large penalty that effectively excludes all these edges from consideration on the 
first two steps of constructing the new solution.  Then, because the construction involves four 
steps in total, we will not activate the critical event memory on subsequent construction steps, 
but will allow the method to proceed in its initial form. 
 
Applying this approach, we restart the method by first choosing edge (3,5), which is the 
minimum weight edge not in the penalized subgraph.  This choice and the remaining choices 
that generate the new starting solution are shown in Table 2.4. 
 

Table 2.4  Restarting procedure. 

Step Candidates Selection Total Weight 

1 (3,5) (3, 5)  6 

2 (2,3), (3,4), (3,6), (5,6), (5,9), (5,12) (5, 9)  22 

3 (2,3), (3,4), (3,6), (5,6), (5,12), (6,9), (8,9), 

(9,12) 

(8, 9)  29 

4 (2,3), (3,4), (3,6), (5,6), (5,12), (6,8), (6,9), 

(7,8), (8,10), (9,12) 

(8, 10)  38 

 
Beginning from the solution constructed in Table 2.4, and applying the first level TS procedure 
exactly as it was applied on the first pass, generates the sequence of solutions shown in Table 
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2.5 and depicted in Figure 2.7.  (Again, we have arbitrarily limited the total number of 
iterations, in this case to 5.) 
 

Table 2.5  TS iterations following restarting. 

Iteration Tabu-active net tenure Add Drop Move Weight 

 1 2   Value  

1   (9,12) (3,5) 3 41 

2 (9,12) (3,5) (10,11) (5,9) -7 34* 

3 (3,5), (10,11) (5,9) (6,8) (9,12) 7 41 

4 (5,9), (6,8) (9,12) (6,7) (10,11) -3 38 

5 (9,12), (6,7) (10,11) (4,7) (8,10) -1 37 

 
It is interesting to note that the restarting procedure generates a better solution (with a total 
weight of 38) than the initial solution generated during the first construction (with a total 
weight of 40).  Also, the restarting solution contains 2 “optimal edges” (i.e., edges that appear 
in the optimal tree).  This starting solution allows the search trajectory to find the optimal 
solution in only two iterations, illustrating the benefits of applying an critical event memory 
within a restarting strategy.  As will be seen in Section 4, related memory structures can also 
be valuable for strategies that drive the search into new regions by “partial restarting” or by 
directly continuing a current trajectory (with modified decision rules). 
 

 
Now we return from our example to examine elements of TS that take us beyond these first 
level concerns, and open up possibilities for creating more powerful solution approaches.  We 
continue to focus primarily on short term aspects, and begin by discussing how to generalize 
the use of recency-based memory when neighborhood exploration is based on add/drop moves.  
From these foundations we then discuss issues of logical restructuring, tabu activation rules 

Fig. 2.7  Graphical representation of TS iterations after restarting. 
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and ways of determining tabu tenure.  We then examine the important area of aspiration 
criteria, together with the role of influence 

2.4  Recency-Based Memory for Add / Drop Moves 

To understand procedurally how various forms of recency-based memory work, and to see their 
interconnections, it is useful to examine a convenient design for implementing the ideas 
illustrated so far.  Such a design for the Min k-Tree problem creates a natural basis for 
handling a variety of other problems for which add/drop moves are relevant.  In addition, the 
ideas can be adapted to settings that are quite different from those where  add/drop moves are 
used. 
 
As a step toward fuller generality, we will refer to items added and dropped as elements, though 
we will continue to make explicit reference to edges (as particular types of elements) within the 
context of the Min k-Tree problem example.  (Elements are related to, but not quite the same 
as, solution attributes.  The difference will be made apparent shortly.)  There are many settings 
where operations of adding and dropping paired elements are the cornerstone of useful 
neighborhood definitions.  For example, many types of exchange or swap moves can be 
characterized by such operations.  Add/drop moves also apply to the omnipresent class of 
multiple choice problems, which require that exactly one element must be chosen from each 
member set from a specified disjoint collection.  Add/drop moves are quite natural in this 
setting, since whenever a new element is chosen from a given set (and hence is “added” to the 
current solution), the element previously chosen from that set must be replaced (and hence 
“dropped”).  Such problems are represented by discrete generalized upper bound (GUB) 
formulations in mathematical optimization, where various disjoint sets of 0-1 variables must 
sum to 1 (hence exactly one variable from each set must equal 1, and the others must equal 0).  
An add/drop move in this formulation consists of choosing a new variable to equal 1 (the “add 
move”) and setting the associated (previously selected) variable equal to 0 (the “drop move”). 
 
Add/drop moves further apply to many types of problems that are not strictly discrete, that is, 
which contain variables whose values can varying continuously across specified ranges.  Such 
applications arise by taking advantage of basis exchange (pivoting) procedures, such as the 
simplex method of linear programming.  In this case, an add/drop move consists of selecting a 
new variable to enter (add to) the basis, and identifying an associated variable to leave (drop 
from) the basis.  A variety of procedures for nonlinear and mixed integer optimization rely on 
such moves, and have provided a useful foundation for a number of tabu search applications.  
Additional related examples will be encountered throughout the course of this book. 
 
2.4.1.  Some Useful Notation 

The approach used in the Min k-Tree problem can be conveniently described by means of the 
following notation.  For a pair of elements that is selected to perform an add/drop move, let 
Added denote the element that is added, and Dropped the element that is dropped.  Also 
denote the current iteration at which this pair is selected by Iter.  We maintain a record of Iter 
to identify when Added and Dropped start to be tabu-active.  Specifically, at this step we set: 
 
 TabuDropStart(Added) = Iter 
 TabuAddStart(Dropped) = Iter. 
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Thus, TabuDropStart records the iteration where Added becomes tabu-active (to prevent this 
element from later being dropped), and TabuAddStart records the iteration where Dropped 
becomes tabu-active (to prevent this element from later being added). 
 
For example, in the Min k-Tree problem illustration of Table 2.3, where the edge (4,6) was 
added and the edge (4,7) was dropped on the first iteration, we would establish the record (for 
Iter = 1) 
 
 TabuDropStart(4,6) = 1 
 TabuAddStart(4,7) = 1 
 
To identify whether or not an element is currently tabu-active, let TabuDropTenure denote the 
tabu tenure (number of iterations) to forbid an element to be dropped (once added), and let 
TabuAddTenure denote the tabu tenure to forbid an element from being added (once dropped).  
(In our Min k-Tree problem example of Section 2.2, we selected TabuAddTenure = 2 and 
TabuDropTenure = 1.) 
 
As a point of clarification, when we speak of an element as being tabu-active, our terminology 
implicitly treats elements and attributes as if they are the same.  However, to be precise, each 
element is associated with two different attributes, one where the element belongs to the 
current solution and one where the element does not.  Elements may be viewed as 
corresponding to variables and attributes as corresponding to specific value assignments for 
such variables.  There is no danger of confusion in the add/drop setting, because we always 
know when an element belongs or does not belong to the current solution, and hence we know 
which of the two associated attributes is currently being considered. 
 
We can now identify precisely the set of iterations during which an element (i.e., its associated 
attribute) will be tabu-active.  Let TestAdd and TestDrop denote a candidate pair of elements, 
whose members are respectively under consideration to be added and dropped from the 
current solution.  If TestAdd previously corresponded to an element Dropped that was dropped 
from the solution and TestDrop previously corresponded to an element Added that was added 
to the solution (not necessarily on the same step), then it is possible that one or both may be 
tabu-active and we can check their status as follows.  By means of the records established on 
earlier iterations, where TestAdd began to be tabu-active at iteration TabuAddStart(TestAdd) 
and TestDrop began to be tabu-active at iteration TabuDropStart(TestDrop), we conclude that as 
Iter grows the status of these elements will be given by: 
 
 TestAdd is tabu-active when: 
  Iter ≤ TabuAddStart(TestAdd) + TabuAddTenure 
 TestDrop is tabu-active when: 
  Iter ≤ TabuDropStart(TestDrop) + TabuDropTenure 
 
Consider again the Min k-Tree problem illustration of Table 2.3.  As previously noted, the move 
of Iteration 1 that added edge (4.6) and dropped edge (4,7) was accompanied by setting the 
TabuDropStart(4,6) = 1 and TabuAddStart(4,7) = 1, to record the iteration where these two 
edges start to be tabu-active (to prevent (4,6) from being dropped and (4,7) from being added).  
The edge (4,6) will then remain tabu-active on subsequent iterations, in the role of TestDrop (as 
a candidate to be dropped), as long as  
 
 Iter ≤ TabuDropStart(4,6) + TabuDropTenure. 
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Hence, since we selected TabuDropTenure = 1 (to prevent an added edge from being dropped for 
1 iteration), it follows that (4,6) remains tabu-active as long as 
 
 Iter ≤ 2. 
 
Similarly, having selected TabuAddTenure = 2, we see that the edge (4,7) remains tabu-active, 
to forbid it from being added back, as long as 
 
 Iter ≤ 3. 
 
An initialization step is needed to be sure that elements that have never been previously added 
or dropped from the solutions successively generated will not be considered tabu-active.  This 
can be done by initially setting TabuAddStart and TabuDropStart equal to a large negative 
number for all elements.  Then, as Iter begins at 1 and successively increases, the inequalities 
that determine the tabu-active status will not be satisfied, and hence will correctly disclose that 
an element is not tabu-active, until it becomes one of the elements Added or Dropped.  
(Alternately, TabuAddStart and TabuDropStart can be initialized at 0, and the test of whether 
an element is tabu-active can be skipped when it has a 0 value in the associated array.) 
 
2.4.2  Streamlining 

The preceding ideas can be streamlined to allow a more convenient implementation.  First, we 
observe that the two arrays, TabuAddStart and TabuDropStart, which we have maintained 
separately from each other in to emphasize their different functions, can be combined into a 
single array TabuStart. The reason is simply that we can interpret TabuStart(E) to be the same 
as TabuDropStart(E) when the element E is in the current solution, and to be the same as 
TabuAddStart(E) when E is not in the current solution.  (There is no possible overlap between 
these two states of E, and hence no danger of using the TabuStart array incorrectly.)  
Consequently, from now on, we will let the single array TabuStart take the role of both 
TabuAddStart and TabuDropStart. For example, when the move is executed that (respectively) 
adds and drops the elements Added and Dropped, the appropriate record consists of setting: 
 
 TabuStart(Added) = Iter 
 TabuStart(Dropped) = Iter. 
 
The TabuStart array has an additional function beyond that of monitoring the status of tabu-
active elements. (As shown in Section 4, this array is also useful for determining a type of 
frequency measure called a residence frequency.) However, sometimes it is convenient to use a 
different array, TabuEnd, to keep track of tabu-active status for recency-based memory, as we 
are treating here.  Instead of recording when the tabu-active status starts, TabuEnd records 
when it ends.  Thus, in place of the two assignments to TabuStart shown above, the record 
would consist of setting: 
 
 TabuEnd(Added) = Iter + TabuDropTenure 
 TabuEnd(Dropped) = Iter + TabuAddTenure. 
 
(The element Added is now available to be dropped, and the element Dropped is now available 
to be added.)  In conjunction with this, the step that checks for whether a candidate pair of 
elements TestAdd and TestDrop are currently tabu-active becomes: 
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 TestAdd is tabu-active when: 
  Iter ≤ TabuEnd(TestAdd) 
 TestDrop is tabu-active when: 
  Iter ≤ TabuEnd(TestDrop). 
 
This is a simpler representation than the one using TabuStart, and so it is appealing when 
TabuStart is not also used for additional purposes.  (Also, TabuEnd can simply be initialized at 
0 rather than at a large negative number.) 
 
As will be discussed more fully in the next section, the values of TabuAddTenure and 
TabuDropTenure (which are explicitly referenced in testing tabu-active status with TabuStart, 
and implicitly referenced in testing this status with TabuEnd), are often preferably made 
variable rather than fixed.  The fact that we use different tenures for added and dropped 
elements discloses that it can be useful to differentiate the tenures applied to elements of 
different classes.  This type of differentiation can also be based on historical performance, as 
tracked by frequency-based measures.  Consequently, tenures may be individually adjusted for 
different elements (as well as modified over time).  Such adjustment can be quite effective in 
some settings (e.g., see Laguna, et al. 1995).  These basic considerations can be refined to 
create effective implementations and also can be extended to handle additional move 
structures, as shown in Glover and Laguna (1997). 

2.5  Tabu Tenure 

In general, recency-based memory is managed by creating one or several tabu lists, which 
record the tabu-active attributes and implicitly or explicitly identify their current status.  Tabu 
tenure can vary for different types or combinations of attributes, and can also vary over 
different intervals of time or stages of the search.  This varying tenure makes it possible to 
create different kinds of tradeoffs between short term and longer term strategies.  It also 
provides a dynamic and robust form of search. 
 
The choice of appropriate types of tabu lists depends on the context.  Although no single type 
of list is uniformly best for all applications, some guidelines can be formulated.  If memory 
space is sufficient (as it often is) to store one piece of information (e.g., a single integer) for each 
solution attribute used to define the tabu activation rule, it is usually advantageous to record 
the iteration number that identifies when the tabu-active status of an attribute starts or ends 
as illustrated by the add/drop data structure described in Sections 2.3 and 2.4.  This typically 
makes it possible to test the tabu status of a move in constant time.  The necessary memory 
space depends on the attributes and neighborhood size, but it does not depend on the tabu 
tenure. 
 
Depending on the size of the problem, it may not be feasible to implement the preceding 
memory structure in combination with certain types of attributes.  In general, storing one piece 
of information for each attribute becomes unattractive when the problem size increases or 
attribute definition is complex.  Sequential and circular tabu lists are used in this case, which 
store the identities of each tabu-active attribute, and explicitly (or implicitly, by list position) 
record associated tabu tenures. 
 
Effective tabu tenures have been empirically shown to depend on the size of the problem 
instance.  However, no single rule has been designed to yield an effective tenure for all classes 
of problems.  This is partly because an appropriate tabu tenure depends on the strength of the 
tabu activation rule employed (where more restrictive rules are generally coupled with shorter 
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tenures).  Effective tabu tenures and tabu activation rules can usually be determined quite 
easily for a given class of problems by a little experimentation.  Tabu tenures that are too small 
can be recognized by periodically repeated objective function values or other function 
indicators, including those generated by hashing, that suggest the occurrence of cycling.  
Tenures that are too large can be recognized by a resulting deterioration in the quality of the 
solutions found (within reasonable time periods).  Somewhere in between typically exists a 
robust range of tenures that provide good performance.   
 
Once a good range of tenure values is located, first level improvements generally result by 
selecting different values from this range on different iterations.  (A smaller subrange, or even 
more than one subrange, may be chosen for this purpose.)  Problem structures are sometimes 
encountered where performance for some individual fixed tenure values within a range can be 
unpredictably worse than for other values in the range, and the identity of the isolated poorer 
values can change from problem to problem.  However, if the range is selected to be good 
overall then a strategy that selects different tenure values from the range on different iterations 
typically performs at a level comparable to selecting one of the best values in the range, 
regardless of the problem instance. 
 
Short term memory refinements subsequently discussed, and longer term considerations 
introduced in later sections, transform the method based on these constructions into one with 
considerable power.  Still, it occasionally happens that even the initial short term approach by 
itself leads to exceptionally high quality solutions.  Consequently, some of the TS literature has 
restricted itself only to this initial part of the method. 
 
In general, short tabu tenures allow the exploration of solutions “close” to a local optimum, 
while long tenures can help to break free from the vicinity of a local optimum.  These functions 
illustrate a special instance of the notions of intensification and diversification that will be 
explored in more detail later.  Varying the tabu tenure during the search provides one way to 
induce a balance between closely examining one region and moving to different parts of the 
solution space. 
 
In situations where a neighborhood may (periodically) become fairly small, or where a tabu 
tenure is chosen to be fairly large, it is entirely possible that iterations can occur when all 
available moves are classified tabu.  In this case an aspiration-by-default is used to allow a 
move with a “least tabu” status to be considered admissible.  Such situations rarely occur for 
most problems, and even random selection is often an acceptable form of aspiration-by-default.  
When tabu status is translated into a modified evaluation criterion, by penalties and 
inducements, then of course aspiration-by-default is handled automatically, with no need for to 
monitor the possibility that all moves are tabu. 
 
There are several ways in which a dynamic tabu tenure can be implemented.  These 
implementations may be classified into random and systematic dynamic tabu tenures. 
 
2.5.1 Random Dynamic Tenure 

Random dynamic tabu tenures are often given one of two forms.  Both of these forms use a 
tenure range defined by parameters tmin and tmax.  The tabu tenure t is randomly selected within 
this range, usually following a uniform distribution.  In the first case, the chosen tenure is 
maintained constant for αtmax iterations, and then a new tenure is selected by the same 
process.  The second form draws a new t for every attribute that becomes tabu at a given 
iteration.  The first form requires more bookkeeping than the second one, because one must 
remember the last time that the tabu tenure was modified.   
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Either of the two arrays TabuStart or TabuEnd discussed in Section 2.4 can be used to 
implement these forms of dynamic tabu tenure.  For example, a 2-dimensional array TabuEnd 
can be created to control a dynamic recency-based memory for the sequencing problem 
introduced at the beginning of this section.  As in the case of the Min k-Tree problem, such an 
array can be used to record the time (iteration number) at which a particular attribute will be 
released from its tabu status.  Suppose, for example, that tmin = 5 and tmax = 10 and that swaps 
of jobs are used to move from one solution to another in the sequencing problem.  Also, 
assume that TabuEnd(j,p) refers to the iteration that job j will be released from a tabu 
restriction that prevents it from being assigned to position p.  Then, if at iteration 30, job 8 in 
position 2 is swapped with job 12 in position 25, we will want to make the attribute (8,2) and 
(12,25) tabu-active for some number of iterations to prevent a move that will return one or both 
of jobs 8 and 12 from re-occupying their preceding positions.  If t is assigned a value of 7 from 
the range tmin = 5 and tmax = 10, then upon making the swap at iteration 30 we may set 
TabuEnd(8,2) = 37 and TabuEnd(12,25) = 37. 
 
This is not the only kind of TabuEnd array that can be used for the sequencing problem, and 
we examine other alternatives and their implications in Section 3.  Nevertheless, we warn 
against a potential danger.  An array TabuEnd(i,j) that seeks to prevent jobs i and j from 
exchanging positions, without specifying what these positions are, does not truly refer to 
attributes of a sequencing solution, and hence entails a risk if used to determine tabu status.  
(The pair (i,j) here constitutes an attribute of a move, in a lose sense, but does not serve to 
distinguish one solution from another.)  Thus, if at iteration 30 we were to set TabuEnd(8,12) = 
37, in order to prevent jobs 8 and 12 from exchanging positions until after iteration 37, this 
still might not prevent job 8 from returning to position 2 and job 12 from returning to position 
25.  In fact, a sequence of swaps could be executed that could return to precisely the same 
solution visited before swapping jobs 8 and 12. 
 
Evidently, the TabuEnd array can be used by selecting a different t from the interval (tmin, tmax) 
at every iteration.  As remarked in the case of the Min k-Tree problem, it is also possible to 
select t differently for different solution attributes. 
 
2.5.2  Systematic Dynamic Tenure 

Dynamic tabu tenures based on a random scheme are attractive for their ease of 
implementation.  However, relying on randomization may not be the best strategy when specific 
information about the context is available.  In addition, certain diversity-inducing patterns can 
be achieved more effectively by not restricting consideration to random designs.  A simple form 
of systematic dynamic tabu tenure consists of creating a sequence of tabu search tenure values 
in the range defined by tmin and tmax.  This sequence is then used, instead of the uniform 
distribution, to assign the current tabu tenure value.  Suppose it is desired to vary t so that its 
value alternately increases and decreases.  (Such a pattern induces a form of diversity that will 
rarely be achieved randomly.)  Then the following sequence can be used for the range defined 
above: 
 

{ 5, 8, 6, 9, 7, 10 }. 
 
The sequence may be repeated as many times as necessary until the end of the search, where 
additional variation is introduced by progressively shifting and/or reversing the sequence 
before repeating it.  (In a combined random/systematic approach, the decision of the shift 
value and the forward or backward direction can itself be made random.)  Another variation is 
to retain a selected tenure value from the sequence for a variable number of iterations before 
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selecting the next value.  Different sequences can be created and identified as effective for 
particular classes of problems. 
 
The foregoing range of values (from 5 to 10) may seem relatively small.  However, some 
applications use even smaller ranges, but adaptively, increase and decrease the midpoint of the 
range for diversification and intensification purposes.  Well designed adaptive systems can 
significantly reduce or even eliminate the need to discover a best range of tenures by 
preliminary calibration.  This is an important area of study. 
 
These basic alternatives typically provide good starting tabu search implementations.  In fact, 
most initial implementations apply only the simplest versions of these ideas. 

2.6  Aspiration Criteria and Regional Dependencies 

Aspiration criteria are introduced in tabu search to determine when tabu activation rules can 
be overridden, thus removing a tabu classification otherwise applied to a move.  (The improved-
best and aspiration-by-default criteria, as previously mentioned, are obvious simple instances.)  
The appropriate use of such criteria can be very important for enabling a TS method to achieve 
its best performance levels.  Early applications employed only a simple type of aspiration 
criterion, consisting of removing a tabu classification from a trial move when the move yields a 
solution better than the best obtained so far.  This criterion remains widely used.  However, 
other aspiration criteria can prove effective for improving the search. 
 
A basis for one of these criteria arises by introducing the concept of influence, which measures 
the degree of change induced in solution structure or feasibility.  This notion can be illustrated 
for the Min k-Tree problem as follows.  Suppose that the current solution includes edges (1,2), 
(1,4), (4,7) and (6,7), as illustrated in Figure 2.9, following.  A high influence move, that 
significantly changes the structure of the current solution, is exemplified by dropping edge (1,2) 
and replacing it by edge (6,9).  A low influence move, on the other hand, is exemplified by 
dropping edge (6,7) and adding edge (4,6).  The weight difference of the edges in the high 
influence move is 15, while the difference is 9 for the low influence move.  However, it is 
important to point out that differences on weight or cost are not the only — or even the primary 
— basis for distinguishing between moves of high and low influence.  In the present example, 
the move we identify as a low influence move creates a solution that consists of the same set of 
nodes included in the current solution, while the move we identified as a high influence move 
includes a new node (number 9) from which new edges can be examined.  (These moves 
correspond to those labeled static and dynamic in Figure 2.3.) 
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As illustrated here, high influence moves may or may not improve the current solution, though 
they are less likely to yield an improvement when the current solution is relatively good.  But 
high influence moves are important, especially during intervals of breaking away from local 
optimality, because a series of moves that is confined to making only small structural change is 
unlikely to uncover a chance for significant improvement.  Executing the high influence move 
in Figure 2.8, for example, allows the search to reach the optimal edges (8,9) and (9,12) in 
subsequent iterations.  Of course, moves of much greater influence than those shown can be 
constructed by considering compound moves.  Such considerations are treated in later 
sections. 
 
Influence often is associated with the idea of move distance.  Although important, move 
influence is only one of several elements that commonly underlie the determination of 
aspiration criteria.  We illustrate a few of these elements in Table 2.6. 
 

Fig. 2.8  Influence level of two moves. 
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Table 2.6  Illustrative aspiration criteria. 

Aspiration by Description Example 

Default If all available moves are classified 
tabu, and are not render admissible 
by some other aspiration criteria, 
then a “least tabu” move is selected. 

Revoke the tabu status of all moves with 
minimum TabuEnd value. 

Objective Global:  A move aspiration is satisfied 
if the move yields a solution better 
than the best obtained so far. 
 
 
 
 
 
Regional:  A move aspiration is 
satisfied if the move yields a solution 
better than the best found in the 
region where the solution lies. 

Global:  The best total tardiness found so far 
is 29.  The current sequence is (4, 1, 5, 3, 6, 
2) with T = 39.  The move value of the tabu 
swap (5,2) is −20 .  Then, the tabu status of 
the swap is revoked and the search moves to 
the new best sequence (4, 1, 2, 3, 6, 5) with T 
= 19. 
 
Regional:  The best sequence found in the 
region defined by all sequences (1, 2, 3, *, *, *) 
is (1, 2, 3, 6, 4, 5) with T = 31.  The current 
solution is (1, 4, 3, 2, 6, 5) with T = 23.  The 
swap (4, 2) with move value of 6 is tabu.  The 
tabu status is revoked because a new regional 
best (1, 2, 3, 4, 6, 5) with T = 29  can be 
found. 

Search 
Direction 

An attribute can be added and 
dropped from a solution (regardless of 
its tabu status), if the direction of the 
search (improving or nonimproving) 
has not changed. 

For the Min k-Tree problem, the edge (11,12) 
has been recently dropped in the current 
improving phase making its addition a tabu-
active attribute.  The improving phase can 
continue if edge (11,12) is now added, 
therefore its tabu status may be revoked. 

Influence The tabu status of a low influence 
move may be revoked if a high 
influence move has been performed 
since establishing the tabu status for 
the low influence move. 

If the low influence swap (1,4) described in 
Table 2.7 is classified tabu, its tabu status 
can be revoked after the high influence swap 
(4,5) is performed. 

 
Aspirations such as those shown in Table 2.6 can be applied according to two implementation 
categories: aspiration by move and aspirations by attribute.  A move aspiration, when satisfied, 
revokes the move’s tabu classification.  An attribute aspiration, when satisfied, revokes the 
attribute’s tabu-active status.  In the latter case the move may or may not change its tabu 
classification, depending on whether the tabu activation rule is triggered by more than one 
attribute.  For example in our sequencing problem, if the swap of jobs 3 and 6 is forbidden 
because a tabu activation rule prevents job 3 from moving at all, then an attribute aspiration 
that revokes job 3’s tabu-active status also revokes the move’s tabu classification.  However, if 
the swap (3,6) is classified tabu because both job 3 and job 6 are not allowed to move, then 
revoking job 3’s tabu-active status does not result in overriding the tabu status of the entire 
move. 
 
Different variants of the aspiration criteria presented in Table 2.6 are possible.  For example, 
the regional aspiration by objective can be defined in terms of bounds on the objective function 
value.  These bounds determine the region being explored, and they are modified to reflect the 
discovery of better (or worse) regions.  Another possibility is to define regions with respect to 
time.  For example, one may record the best solution found during the recent past (defined as a 
number of iterations) and use this value as the aspiration level. 
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2.7 Concluding Observations for the Min k-Tree Example 

Influence of tabu tenures. 
 
The tabu tenures used to illustrate the first level TS approach for the Min k-Tree problem of 
course are very small. The risk of using such tenures can be demonstrated in this example 
from the fact that changing the weight of edge (3,6) in Figure 2.2 from 20 to 17, will cause the 
illustrated TS approach with TabuAddTenure = 2 and TabuDropTenure = 1 to go into a cycle 
that will prevent the optimal solution from being found.  The intuition that TabuDropTenure 
has a stronger influence than the TabuAddTenure for this problem is supported by the fact that 
the use of tenures of TabuAddTenure = 1 and TabuDropTenure = 2 in this case will avoid the 
cycling problem and allow an optimal solution to be found. 
 
Alternative Neighborhoods   
 
The relevance of considering alternative neighborhoods can be illustrated by reference to the 
following observation.  For any given set of k+1 nodes, an optimal (min weight) k-tree over these 
nodes can always be found by using the greedy constructive procedure illustrated in Table 2.1 
to generate a starting solution (restricted to these nodes) or by beginning with an arbitrary tree 
on these nodes and performing a succession of static improving moves (which do not change 
the node set).  The absence of a static improving move signals that no better solution can be 
found on this set.   
 
This suggests that tabu search might advantageously be used to guide the search over a “node-
swap” neighborhood instead of an “edge-swap” neighborhood, where each move consists of 
adding a non-tree node i and dropping a tree node j, followed by finding a min weight solution 
on the resulting node set.  (Since the tree node j may not be a leaf node, and the reconnections 
may also not make node i a leaf node in the new tree, the possibilities are somewhat different 
than making a dynamic move in the edge-swap neighborhood.)  The tabu tenures may 
reasonably be defined over nodes added and dropped, rather than over edges added and 
dropped.  
 
Critical event memory. 
 
The type of critical event memory used in the illustration of restarting the TS approach in 
Section 2.3.1 may not be best.  Generally it is reasonable to expect that the type of critical 
event memory used for restarting should be different from that used to continue the search 
from the current solution (when both are applied to drive the search into new regions).  
Nevertheless, a form that is popularly used in both situations consists of remembering all 
elements contained in solutions previously examined.  One reason is that it is actually easier to 
maintain such memory than to keep track of elements that only occur in selected solutions.  
Also, instead of keeping track only of which elements occur in past solution, critical event 
memory is more usually designed to monitor the frequency that elements have appeared in 
past solutions.  Such considerations are amplified in Section 4. 

3.  Additional Aspects of Short Term Memory 

We began the discussion of short term memory for tabu search by contrasting the TS designs 
with those of memoryless strategies such as simple or iterated descent, and by pointing out 
how candidate list strategies are especially important for applying TS in the most effective 
ways.  We now describe types of candidate list strategies that often prove valuable in tabu 
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search implementations.  Then we examine the issues of logical restructuring, which provide 
important bridges to longer term considerations. 

3.1  Tabu Search and Candidate List Strategies 

The aggressive aspect of TS is manifest in choice rules that seek the best available move that 
can be determined with an appropriate amount of effort.  As addressed in Section 2, the 
meaning of best in TS applications is customarily not limited to an objective function 
evaluation.  Even where the objective function evaluation may appear on the surface to be the 
only reasonable criterion to determine the best move, the non-tabu move that yields a 
maximum improvement or least deterioration is not always the one that should be chosen.  
Rather, as we have noted, the definition of best should consider factors such as move 
influence, determined by the search history and the problem context. 
 
For situations where N*(x) is large or its elements are expensive to evaluate, candidate list 
strategies are essential to restrict the number of solutions examined on a given iteration.  In 
many practical settings, TS is used to control a search process that may involve the solution of 
relatively complex subproblems by way of linear programming or simulation.  Because of the 
importance TS attaches to selecting elements judiciously, efficient rules for generating and 
evaluating good candidates are critical to the search process.  The purpose of these values is to 
isolate regions of the neighborhood containing moves with desirable features and to put these 
moves on a list of candidates for current examination. 
 
Before describing the kinds of candidate list strategies that are particularly useful in tabu 
search implementations, we note that the efficiency of implementing such strategies often can 
be enhanced by using relatively straightforward memory structures to give efficient updates of 
move evaluations from one iteration to another.  Appropriately coordinated, such updates can 
appreciably reduce the effort of finding best or near best moves. 
 
In sequencing, for example, the move values often can be calculated without a full evaluation of 
the objective function.  Intelligent updating can be useful even where candidate list strategies 
are not used.  However, the inclusion of explicit candidate list strategies, for problems that are 
large, can significantly magnify the resulting benefits.  Not only search speed but also solution 
quality can be influenced by the use of appropriate candidate list strategies.  Perhaps 
surprisingly, the importance of such approaches is often overlooked. 

3.2  Some General Classes of Candidate List Strategies 

Candidate lists can be constructed from context related rules and from general strategies.  In 
this section we focus on rules for constructing candidate lists that are context-independent.  
We emphasize that the effectiveness of a candidate list strategy should not be measured in 
terms of the reduction of the computational effort in a single iteration.  Instead, a preferable 
measure of performance for a given candidate list is the quality of the best solution found given 
a specified amount of computer time.  For example, a candidate list strategy intended to 
replace an exhaustive neighborhood examination may result in more iterations per unit of time, 
but may require many more iterations to match the solution quality of the original method.  If 
the quality of the best solution found within a desirable time limit (or across a graduated series 
of such limits) does not improve, we conclude that the candidate list strategy is not effective. 
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3.2.1  Aspiration Plus 

The Aspiration Plus strategy establishes a threshold for the quality of a move, based on the 
history of the search pattern.  The procedure operates by examining moves until finding one 
that satisfies this threshold.  Upon reaching this point, additional moves are examined, equal 
in number to the selected value Plus, and the best move overall is selected. 
 
To assure that neither too few nor too many moves are considered, this rule is qualified to 
require that at least Min moves and at most Max moves are examined, for chosen values of Min 
and Max.  The interpretation of Min and Max is as follows.  Let First denote the number of 
moves examined when the aspiration threshold is first satisfied.  Then if Min and Max were not 
specified, the total number of moves examined would be First + Plus.  However, if First + Plus < 
Min, then Min moves are examined while if First + Plus > Max, then Max moves are examined.  
(This conditions may be viewed as imposing limits on the move that is “effectively” treated as 
the First move.  For example, if as many as Max - Plus moves are examined without finding one 
that satisfies the aspiration threshold, then First effectively becomes the same as  Max - Plus.) 
 
This strategy is graphically represented in Figure 3.1.  In this illustration, the fourth move 
examined satisfies the aspiration threshold and qualifies as First.  The value of Plus has been 
selected to be 5, and so 9 moves are examined in total, selecting the best over this interval.  
The value of Min, set at 7, indicates that at least 7 moves will be examined even if First is so 
small that First + Plus < 7.  (In this case, Min is not very restrictive, because it only applies if 
First < 2.)  Similarly, the value of Max, set at 11, indicates that at most 11 moves will be 
examined even if First is so large that First + Plus > 11.  (Here, Max is strongly restrictive.)  The 
sixth move examined is the best found in this illustration. 
 

 
The “Aspiration” line in this approach is an established threshold that can be dynamically 
adjusted during the search.  For example, during a sequence of improving moves, the 
aspiration may specify that the next move chosen should likewise be improving, at a level 
based on other recent moves and the current objective function value.  Similarly, the values of 
Min and  Max can be modified as a function of the number of moves required to meet the 
threshold.   
 

Fig. 3.1  Aspiration Plus strategy. 
 

 

1 2 3 4 5 6 7 8 9 10 11 12

Number of moves examined

M
ov

e 
qu

al
ity

Aspiration

Plus

First Min Max



Tabu Search 31 

During a nonimproving sequence the aspiration of the Aspiration Plus rule will typically be 
lower than during an improving phase, but rise toward the improving level as the sequence 
lengthens.  The quality of currently examined moves can shift the threshold, as by 
encountering moves that significantly surpass or that uniformly fall below the threshold.  As an 
elementary option, the threshold can simply be a function of the quality of the initial Min moves 
examined on the current iteration. 
 
The Aspiration Plus strategy includes several other strategies as special cases.  For example, a 
first improving strategy results by setting Plus = 0 and directing the aspiration threshold to 
accept moves that qualify as improving, while ignoring the values of Min and Max.  Then First 
corresponds to the first move that improves the current value of the objective, if such a move 
can be found.  A slightly more advanced strategy can allow Plus to be increased or decreased 
according to the variance in the quality of moves encountered from among some initial number 
examined.  In general, in applying the Aspiration Plus strategy, it is important to assure on 
each iteration that new moves are examined which differ from those just reviewed.  One way of 
achieving this is to create a circular list and start each new iteration where the previous 
examination left off. 
 
3.2.2 Elite Candidate List 

The Elite Candidate List approach first builds a Master List by examining all (or a relatively 
large number of) moves, selecting the k best moves encountered, where k is a parameter of the 
process.  Then at each subsequent iteration, the current best move from the Master List is 
chosen to be executed, continuing until such a move falls below a given quality threshold, or 
until a given number of iterations have elapsed.  Then a new Master List is constructed and the 
process repeats.  This strategy is depicted in Figure 3.2, below. 
 
This technique is motivated by the assumption that a good move, if not performed at the 
present iteration, will still be a good move for some number of iterations.  More precisely, after 
an iteration is performed, the nature of a recorded move implicitly may be transformed.  The 
assumption is that a useful proportion of these transformed moves will inherit attractive 
properties from their antecedents. 
 
The evaluation and precise identity of a given move on the list must be appropriately 
monitored, since one or both may change as result of executing other moves from the list.  For 
example, in the Min k-Tree problem the evaluations of many moves can remain unchanged 
from one iteration to the next.  However, the identity and evaluation of specific moves will 
change as a result of deleting and adding particular edges, and these changes should be 
accounted for by appropriate updating (applied periodically if not at each iteration).  An Elite 
Candidate List strategy can be advantageously extended by a variant of the Aspiration Plus 
strategy, allowing some additional number of moves outside the Master List to be examined at 
each iteration, where those of sufficiently high quality may replace elements of the Master List. 
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3.2.3  Successive Filter Strategy 

Moves can often be broken into component operations, and the set of moves examined can be 
reduced by restricting consideration to those that yield high quality outcomes for each 
operation separately.  For example, the choice of an exchange move that includes an “add 
component” and a “drop component” may restrict attention only to exchanges created from a 
relatively small subset of “best add” and “best drop” components.  The gain in efficiency can be 
considerable.  If there are 100 add possibilities and 100 drop possibilities, the number of 
add/drop combinations is 10,000.  However, by restricting attention to the 8 best add and drop 
moves, considered independently, the number of combinations to examine is only 64.  (Values 
of 8 and even smaller have been found effective in some practical applications.) 
 
The evaluations of the separate components often will give only approximate information about 
their combined evaluation.  Nevertheless, if this information is good enough to insure a 
significant number of the best complete moves will result by combining these apparently best 
components, then the approach can yield quite good outcomes.  Improved information may be 
obtained by sequential evaluations, as where the evaluation of one component is conditional 
upon the prior (restricted) choices of another.  Such strategies of subdividing compound moves 
into components, and then restricting consideration of complete compound moves only to those 
assembled from components that pass selected thresholds of quality, have proved quite 
effective in TS methods for partitioning problems and for telecommunication channel balancing 
problems. 
 
Conditional uses of component evaluations are also relevant for sequencing problems, where a 
measure can be defined to identify preferred attributes using information such as due dates, 
processing times, and delay penalties.  If swap moves are being used, then some jobs are 
generally better candidates than others to move early or later in the sequence.  The candidate 
list considers those swaps whose composition includes at least one of these preferred 
attributes. 
 
In the context of the traveling salesman problem, good solutions are often primarily composed 
of edges that are among the 20 to 40 shortest edges meeting one of their endpoints (depending 

Fig. 3.2  Elite candidate list strategy. 
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on various factors).  Some studies have attempted to limit consideration entirely to tours 
constructed from such a collection of edges.  The successive filter strategy, by contrast, offers 
greater flexibility by organizing moves that do not have to be entirely composed of such special 
elements, provided one or more of these elements is incorporated as part of the move.  This 
approach can be frequently controlled to require little more time than the more restricted 
standard approach, while affording a more desirable set of alternatives to consider. 
 
3.2.4  Sequential Fan Candidate List 

A type of candidate list that is highly exploitable by parallel processing is the sequential fan 
candidate list.  The basic idea is to generate some p best alternative moves at a given step, and 
then to create a fan of solution streams, one for each alternative.  The several best available 
moves for each stream are again examined, and only the p best moves overall (where many or 
no moves may be contributed by a given stream) provide the p new streams at the next step. 
 
In the setting of tree search methods such a sequential fanning process is sometimes called 
beam search.  For use in the tabu search framework, TS memory and activation rules can be 
carried forward with each stream and hence inherited in the selected continuations.  Since a 
chosen solution can be assigned to more than one stream, different streams can embody 
different missions in TS.  Alternatively, when two streams merge into the same solution other 
streams may be started by selecting a neighbor adjacent to one of the current streams. 
 
The process is graphically represented in Figure 3.3.  Iteration 0 constructs an initial solution 
or alternatively may be viewed as the starting point for constructing a solution.  That is, the 
sequential fan approach can be applied using one type of move to create a set of initial 
solutions, and then can continue using another type of move to generate additional solutions.  
(We thus allow a “solution” to be a partial solution as well as a complete solution.)  The best 
moves from this solution are used to generate p streams.  Then at every subsequent iteration, 
the overall best moves are selected to lead the search to p different solutions.  Note that since 
more than one move may lead the search to the same solution, more than p moves may be 
necessary to continue the exploration of p distinct streams. 
 

 
A more intensive form of the sequential fan candidate list approach, which is potentially more 
powerful but requires more work, is to use the process illustrated in Figure 3.3 as a “look 

Fig. 3.3  Sequential fan candidate list. 
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ahead” strategy.  In this case a limit is placed on the number of iterations that the streams are 
generated beyond iteration 0.  Then the best outcome at this limiting iteration is used to 
identify a “best current move” (a single first branch) from iteration 0.  Upon executing this 
move, the step shown as iteration 1 in Figure 3.3 becomes the new iteration 0, that is, iteration 
0 always corresponds to the current iteration.  Then this solution becomes the source of p new 
streams, and the process repeats. 
 
There are a number of possible variants of this sequential fan strategy.  For example, instead of 
selecting a single best branch at the limiting iteration, the method can select a small number of 
best branches, and thus give the method a handful of candidates from which to generate p 
streams at the new iteration 0. 
 
The iteration limit that determines depth of the look ahead can be variable, and the value of p 
can change at various depths.  Also the number of successors of a given solution that are 
examined to determine candidates for the p best continuations can be varied as by 
progressively reducing this number at greater depths. 
 
The type of staging involved in successive solution runs of each stream may be viewed as a 
means of defining levels in the context of the Proximate Optimality Principle commonly 
associated with the strategic oscillation component of tabu search.  Although we will study this 
principle in more detail later, we remark that the sequential fan candidate list has a form that 
is conveniently suited to exploit it. 
 
3.2.5  Bounded Change Candidate List 

A bounded change candidate list strategy is relevant in situations where an improved solution 
can be found by restricting the domain of choices so that no solution component changes by 
more than a limited degree on any step.  A bound on this degree, expressed by a distance 
metric appropriate to the context, is selected large enough to encompass possibilities 
considered strategically relevant.  The metric may allow large changes along one dimension, 
but limit the changes along another so that choices can be reduced and evaluated more 
quickly.  Such an approach offers particular benefits as part of an intensification strategy 
based on decomposition, where the decomposition itself suggests the limits for bounding the 
changes considered. 

3.3  Connections Between Candidate Lists, Tabu Status and Aspiration Criteria 

It is useful to summarize the short term memory considerations embodied in the interaction 
between candidate lists, tabu status and aspiration criteria.  The operations of these TS short 
term elements are shown in Figure 3.4.  The representation of penalties in Figure 3.4 either as 
“large” or “very small” expresses a thresholding effect:  either the tabu status yields a greatly 
deteriorated evaluation or else it chiefly serves to break ties among solutions with highest 
evaluations.  Such an effect of course can be modulated to shift evaluations across levels other 
than these extremes.  If all moves currently available lead to solutions that are tabu (with 
evaluations that normally would exclude them from being selected), the penalties result in 
choosing a “least tabu” solution. 
 
The sequence of the tabu test and the aspiration test in Figure 3.4 evidently can be reversed 
(that is, by employing the tabu test only if the aspiration threshold is not satisfied).  Also, the 
tabu evaluation can be modified by creating inducements based on the aspiration level, just as 
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it is modified by creating penalties based on tabu status.  In this sense, aspiration conditions 
and tabu conditions can be conceived roughly as “mirror images” of each other. 
 
For convenience Figure 3.4 expresses tabu restrictions solely in terms of penalized evaluations, 
although we have seen that tabu status is often permitted to serve as an all-or-none threshold, 
without explicit reference to penalties and inducements (by directly excluding tabu options 
from being selected, subject to the outcome of aspiration tests).  Whether or not modified 
evaluations are explicitly used, the selected move may not be the one with the best objective 
function value, and consequently the solution with the best objective function value 
encountered throughout the search history is recorded separately. 
 

3.4  Logical Restructuring 

Logical restructuring is an important element of adaptive memory solution approaches, which 
gives a connection between short and long term strategies.  Logical restructuring is implicit in 
strategic oscillation and path relinking, which we examine in subsequent sections, but its role 
and significance in these strategies is often overlooked.  By extension, the general usefulness of 
logical restructuring is also often not clearly understood.  We examine some of its principal 

Fig. 3.4  Short term memory operation. 
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features before delving into longer term considerations, and show how it can also be relevant 
for improving the designs of short term strategies. 
 
Logical restructuring emerges as a way to meet the combined concerns of quality and 
influence.  Its goal is to exploit the ways in which influence (structural, local and global) can 
uncover improved routes to high quality solutions.  For this purpose, a critical step is to re-
design standard strategies to endow them with the power to ferret out opportunities otherwise 
missed.  This step particularly relies on integrating two elements: (1) the identification of 
changes that satisfy properties that are essential (and limiting) in order to achieve 
improvement, in contrast to changes that simply depart from what has previously been seen; 
(2) the use of anticipatory (“means-ends”) analysis to bring about such essential changes.  
Within the context of anticipatory analysis, logical restructuring seeks to answer the following 
questions:  “What conditions assure the existence of a trajectory that will lead to an improved 
solution?” and “What intermediate moves can create such conditions?”  The “intermediate 
moves” of the second question may be generated either by modifying the evaluations used to 
select transitions between solutions or by modifying the neighborhood structure that 
determines these transitions. 
 
To illustrate the relevant considerations, we return again to the example of the Min k-Tree 
problem discussed in previous sections.  We replace the previous graph by the one shown in 
Figure 3.5, but continue to consider the case of k = 4. 
 

 
The same rules to execute a first-level tabu search approach as in our earlier illustrations 
(including the rules for generating a starting solution) produces a sequence of steps that 
quickly reaches the vicinity of the optimal solution, but requires some effort actually find this 
solution.  In fact, it is readily verified that applying these rules will cause all edges of the 
optimal solution except one, edge (10,11), to be contained in the union of the two solutions 
obtained on iterations 4 and 5.  Yet an optimal solution will not be found until iteration 11. 
 
This delayed process of finding a route to an optimal solution (which can be greatly magnified 
for larger or more complex problems) can be substantially accelerated by means of logical 
restructuring.  More generally, such restructuring can make it possible to uncover fertile 
options that can otherwise be missed entirely. 
 

Fig. 3.5  Illustrative Min k-Tree Problem. 
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3.4.1 Restructuring by Changing Evaluations and Neighborhoods 

The first type of logical restructuring we illustrate makes use both of modified evaluations and 
an amended neighborhood structure.  As pointed out in Section 2.2 earlier, the swap moves we 
have employed for the Min k-Tree problem may be subdivided into two types: static swaps, 
which leave the nodes of the current tree unchanged, and dynamic swaps, which replace one of 
the nodes currently in the tree with another that is not in the tree.  This terminology was 
chosen to reflect the effect that each swap type has on the nodes of the tree.  Since dynamic 
swaps in a sense are more influential, we give them special consideration.  We observe that a 
dynamic swap can select an edge to be dropped only if it is a terminal edge ⎯ i.e., one that 
meets a leaf node of the tree, which is a node that is met by only a single tree edge (the 
terminal edge). 
 
Although it is usually advantageous to drop an edge with a relatively large weight, this may not 
be possible.  Thus, we are prompted to consider an “anticipatory goal” of making moves that 
cause more heavily weighted edges to become terminal edges, and hence eligible to be dropped.  
By this means, static swaps can be used to set up desirable conditions for dynamic swaps. 
 
The solution obtained at iteration 4 of the process for solving the example problem of Figure 
3.5 gives a basis for showing what is involved.  We clarify the situation by showing the current 
solution at this iteration in Figure 3.6 (without bothering to identify the solutions obtained at 
other iterations), where edges contained in the current tree are shown as heavy edges and the 
candidate edges to add to the tree are shown as light edges. 
 

 
The move that changes the tree at iteration 4 to that of iteration 5 — if the rules illustrated in 
Section 2 are used — is a dynamic swap that adds edge (8,11) with a weight of 9 and drops 
edge (9,10) with a weight of 8.  We make use of information contained in this choice to 
construct a more powerful move using logical restructuring, as follows. 
 
Having identified (8,11) as a candidate to be added, the associated anticipatory goal is to 
identify a static swap that will change a larger weight edge into a terminal edge.  Specifically, 
the static swap that adds edge (10,11) and drops edge (6,10), with a move value of 3, produces 
a terminal edge from the relatively high weight edge (6,11) (which has a weight of 13).  Since 
the candidate edge (8,11) to be added has a weight of 9, the result of joining the indicated static 
swap with the subsequent dynamic swap (that respectively adds and drops (8,11) and (6,11)) 
will be a net gain.  (The static move value of 3 is joined with the dynamic move value of -4, 
yielding a result of -1.) 
 
Effectively, such anticipatory analysis leads to a way to extract a fruitful outcome from a 
relatively complex set of options by focusing on a simple set of features.  It would be possible to 

Fig. 3.6  Solution and candidate edges to add to 
iteration 4 tree. 
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find the same outcome by a more ponderous approach that checks all sequences in which a 
dynamic move follows a static move.  This requires a great deal of computational effort ⎯ in 
fact, considerably more than involved in the approach without logical restructuring that 
succeeded in finding an optimal solution at iteration 11 (considering the trade-off between 
number of iterations and work per iteration). 
 
By contrast, the use of logical restructuring allows the anticipatory analysis to achieve the 
benefits of a more massive exploration of alternatives, but without incurring the burden of 
undue computational effort.  In this example, the restructuring is accomplished directly as 
follows.  First, it is only necessary to identify the two best edges to add for a dynamic swap 
(independent of matching them with an edge to drop), subject to requiring that these edges 
meet different nodes of the tree.  (In the tree of iteration 4, seen in Figure 3.6, these two edges 
are (8,11) and (8,12).)  Then at the next step, during the process of looking at candidate static 
swaps, a modified “anticipatory move value” is created for each swap that creates a terminal 
edge, by subtracting the weight of this edge from the standard move value. 
 
This gives all that is needed to find (and evaluate) a best “combined move sequence” of the type 
we are looking for.  In particular, every static move that generates a terminal edge can be 
combined with a dynamic move that drops this edge and then adds one of the two “best edges” 
identified in first of the two preceding steps.  Hence, the restructuring is completed by adding 
the anticipatory move value to the weight of one of these two edges (appropriately identified) 
thereby determining a best combined move.  The illustrated process therefore achieves 
restructuring in two ways ⎯ by modifying customary move values and by fusing certain 
sequences of moves into a single compound move. 
 
Although this example appears on the surface to be highly problem specific, its basic features 
are shared by applications that arise in a variety of problem settings.  Later the reader will see 
how variants of logical restructuring embodied in this illustration are natural components of 
the strategies of path relinking and ejection chain constructions. 
 
3.4.2 Threshold Based Restructuring and Induced Decomposition 

The second mode of logical restructuring that we illustrate by reference to the Min k-Tree 
problem example is more complex (in the sense of inducing a more radical restructuring), but 
relatively easy to sketch and also potentially more powerful. 
 
Consider again the solution produced at iteration 4. This is a local optimum and also the best 
solution found up to the current stage of search.  We seek to identify a property that will be 
satisfied by at least one solution that has a smaller weight than the weight of this solution (41), 
and which will impose useful limits on the composition of such a solution.  A property that in 
fact must be shared by all “better” solutions can be expressed as a threshold involving the 
average weight of the tree edges.  This average weight must be less than the threshold value of 
41/4 (i.e., 10 1/4).  Since some of the edges in any improved solution must have weights less 
than this threshold, we are motivated to identify such “preferred” edges as a foundation for a 
restructured form of the solution approach.  In this type of restructuring, we no longer confine 
attention to swap moves, but look for ways to link the preferred edges to produce an improved 
solution.  (Such a restructuring can be based on threshold values derived from multiple 
criteria.) 
 
When the indicated strategy is applied to the present example, a large part of the graph is 
eliminated, leaving only 3 separate connected components: (a) the edge (2,3), (b) the edge 
(9,10), and (c) the three edges (8,11), (8,12) and (11,12).  The graph that highlights these 
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components is shown in Figure 3.7.  At this point a natural approach is to link such 
components by shortest paths, and then shave off terminal edges if the trees are too large, 
before returning to the swapping process.  Such an approach will immediately find the optimal 
solution that previously was not found until iteration 11. 
 

 
This second illustrated form of restructuring is a fundamental component of the strategic 
oscillation approach which we describe in more detail in the next section.  A salient feature of 
this type of restructuring is its ability to create an induced decomposition of either the solution 
space or the problem space.  This outcome, coupled with the goal of effectively joining the 
decomposed components to generate additional solution alternatives, is also a basic 
characteristic of path relinking, which is also examined in the next section.  More particularly, 
the special instance of path relinking known as vocabulary building, which focuses on 
assembling fragments of solutions into larger units, offers a direct model for generalizing the 
“threshold decomposition” strategy illustrated here. 
 
In some applications, specific theorems can be developed about the nature of optimal solutions 
and can be used to provide relevant designs for restructuring. The Min k-Tree problem is one 
for which such a theorem is available (Glover and Laguna, 1997).  Interestingly, the second 
form of restructuring we have illustrated, which is quite basic, exploits several aspects of this 
theorem ⎯ although without “knowing” what the theorem is.  In general, logical restructuring 
and the TS strategies such as path relinking and strategic oscillation which embody it, appear 
to behave as if they similarly have a capacity to exploit underlying properties of optimal 
solutions in broader contexts ⎯ contexts whose features are not sufficiently uniform or easily 
characterized to permit the nature of optimal solutions to be expressed in the form of a 
theorem. 

4.  Longer Term Memory 

In some applications, the short term TS memory components are sufficient to produce very 
high quality solutions.  However, in general, TS becomes significantly stronger by including 
longer term memory and its associated strategies.  In the longer term TS strategies, the 
modified neighborhood produced by tabu search may contain solutions not in the original one, 
generally consisting of selected elite solutions (high quality local optima) encountered at 
various points in the solution process.  Such elite solutions typically are identified as elements 
of a regional cluster in intensification strategies, and as elements of different clusters in 
diversification strategies.  In addition, elite solution components, in contrast to the solutions 

Fig. 3.7  Threshold generated components. 
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themselves, are included among the elements that can be retained and integrated to provide 
inputs to the search process. 
 
Perhaps surprisingly, the use of longer term memory does not require long solution runs before 
its benefits become visible.  Often its improvements begin to be manifest in a relatively modest 
length of time, and can allow solution efforts to be terminated somewhat earlier than otherwise 
possible, due to finding very high quality solutions within an economical time span.  The 
fastest methods for some types of routing and scheduling problems, for example, are based on 
including longer term TS memory.  On the other hand, it is also true that the chance of finding 
still better solutions as time grows ⎯ in the case where an optimal solution is not already 
found ⎯ is enhanced by using longer term TS memory in addition to short term memory. 

4.1  Frequency-Based Approach 

Frequency-based memory provides a type of information that complements the information 
provided by recency-based memory, broadening the foundation for selecting preferred moves.  
Like recency, frequency often is weighted or decomposed into subclasses by taking account of 
the dimensions of solution quality and move influence.  Also, frequency can be integrated with 
recency to provide a composite structure for creating penalties and inducements that modify 
move evaluations.  (Although recency-based memory is often used in the context of short term 
memory, it can also be a foundation of longer term forms of memory.) 
 
For our present purposes, we conceive frequencies to consist of ratios, whose numerators 
represent counts expressed in two different measures:  a transition measure — the number of 
iterations where an attribute changes (enters or leaves) the solutions visited on a particular 
trajectory, and a residence measure — the number of iterations where an attribute belongs to 
solutions visited on a particular trajectory, or the number of instances where an attribute 
belongs to solutions from a particular subset.  The denominators generally represent one of 
three types of quantities:  (1) the total number of occurrences of all events represented by the 
numerators (such as the total number of associated iterations), (2) the sum (or average) of the 
numerators, and (3) the maximum numerator value.  In cases where the numerators represent 
weighted counts, some of which may be negative, denominator (3) is expressed as an absolute 
value and denominator (2) is expressed as a sum of absolute values (possibly shifted by a small 
constant to avoid a zero denominator).  The ratios produce transition frequencies that keep 
track of how often attributes change, and residence frequencies that keep track of how often 
attributes are members of solutions generated.  In addition to referring to such frequencies, 
thresholds based on the numerators alone can be useful for indicating when phases of greater 
diversification are appropriate.  (The thresholds for particular attributes can shift after a 
diversification phase is executed.) 
 
Residence frequencies and transition frequencies sometimes convey related information, but in 
general carry different implications.  They are sometimes confused (or treated identically) in the 
literature.  A noteworthy distinction is that residence measures, by contrast to transition 
measures, are not concerned with the characteristics of a particular solution attribute or 
whether it is an attribute that changes in moving from one solution to another.  For example in 
the Min k-Tree problem, a residence measure may count the number of times edge (i,j) was part 
of the solution, while a transition measure may count the number of times edge (i,j) was added 
to the solution.  (More complex joint measures, such as the number of times edge (i,j) was 
accompanied in the solution by edge (k,l), or was deleted from the solution in favor of edge (k,l), 
can also selectively be generated.  Such frequencies relate to the issues of creating more 
complex attributes out of simpler ones, and to the strategies of vocabulary building.) 
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A high residence frequency may indicate that an attribute is highly attractive if the domain 
consists of high quality solutions, or may indicate the opposite, if the domain consists of low 
quality solutions.  On the other hand, a residence frequency that is high (or low) when the 
domain is chosen to include both high and low quality solutions may point to an entrenched 
(or excluded) attribute that causes the search space to be restricted, and that needs to be 
jettisoned (or incorporated) to allow increased diversity.  For example, an entrenched attribute 
may be a job that is scheduled in the same position during a sequence of iterations that 
include both low and high quality objective function evaluations. 
 
As a further useful distinction, a high transition frequency, in contrast to a high residence 
frequency, may indicate an associated attribute is a “crack filler,” that shifts in and out of 
solutions to perform a fine tuning function.  In this context, a transition frequency may be 
interpreted as a measure of volatility.  For example, the Min k-Tree problem instance in Figure 
2.2 of Section 2 contains a number of edges whose weight may give them the role of crack 
fillers.  Specifically, edges (3,5) and (6,7) both have a weight of 6, which makes them attractive 
relative to other edges in the graph.  Since these edges are not contained in an optimal 
solution, there is some likelihood that they may repeatedly enter and leave the current solution 
in a manner to lure the search away from the optimal region.  In general, crack fillers are 
determined not simply by cost or quality but by structure, as in certain forms of connectivity.  
(Hence, for example, the edge (3,5) of Figure 2.2 does not repeatedly enter and leave solutions 
in spite of its cost.)  Some subset of such elements is also likely to be a part of an optimal 
solution.  This subset can typically be identified with much less difficulty once other elements 
are in place.  On the other hand, a solution (full or partial) may contain the “right” crack fillers 
but offer little clue as to the identity of the other attributes that will transform the solution into 
one that is optimal. 
 
We use a sequencing problem and the Min k-Tree problem as contexts to further illustrate both 
residence and transition frequencies.  Only numerators are indicated, understanding that 
denominators are provided by the conditions (1) to (3) previously defined.  The measures are 
given in Table 4.1. 
 

Table 4.1.  Example of frequency measures. 

Problem Residence Measure Transition Measure 

Sequencing Number of times job j has 
occupied position π(j). 

Number of times job i has 
exchanged positions with job j. 

 Sum of tardiness of job j when 
this job occupies position π(j). 

Number of times job j has been 
moved to an earlier position in the 
sequence. 

Min k-Tree 
Problem 

Number of times edge (i, j) has 
been part of the current 
solution. 

Number of times edge (i, j) has 
been deleted from the current 
solution when edge (k, l) has been 
added. 

 Sum of total solution weight 
when edge (i, j) is part of the 
solution. 

Number of times edge (i, j) has 
been added during improving 
moves. 

 
Attributes that have greater frequency measures, just as those that have greater recency 
measures (i.e., that occur in solutions or moves closer to the present), can trigger a tabu 
activation rule if they are based on consecutive solutions that end with the current solution.  
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However, frequency-based memory often finds its most productive use as part of a longer term 
strategy, which employs incentives as well as restrictions to determine which moves are 
selected.  In such a strategy, tabu activation rules are translated into evaluation penalties, and 
incentives become evaluation enhancements, to alter the basis for qualifying moves as 
attractive or unattractive. 
 
To illustrate, in a scheduling setting where a swap neighborhood is used, an attribute such as 
a job j with a high residence frequency in position π(j) may be assigned a strong incentive 
(“profit”) to serve as a swap attribute, thus resulting in the choice of a move that yields a new 
sequence π′ with π′(j) ≠ π(j).  Such an incentive is particularly relevant in the case where the 
TabuEnd value of job j is small compared to the current iteration, since this value (minus the 
corresponding tabu tenure) identifies the latest iteration that job j was a swap attribute, and 
hence discloses that job j has occupied position π(j) in every solution since. 
 
Frequency-based memory therefore is usually applied by introducing graduated tabu states, as 
a foundation for defining penalty and incentive values to modify the evaluation of moves.  A 
natural connection exists between this approach and the recency-based memory approach that 
creates tabu status as an all-or-none condition.  If the tenure of an attribute in recency-based 
memory is conceived as a conditional threshold for applying a very large penalty, then the tabu 
classifications produced by such memory can be interpreted as the result of an evaluation that 
becomes strongly inferior when the penalties are activated.  Conditional thresholds are also 
relevant to determining the values of penalties and incentives in longer term strategies.  Most 
applications at present, however, use a simple linear multiple of a frequency measure to create 
a penalty or incentive term.  The multiplier is adjusted to create the right balance between the 
incentive or penalty and the cost (or profit) coefficients of the objective function. 

4.2  Intensification Strategies 

Intensification strategies are based on modifying choice rules to encourage move combinations 
and solution features historically found good.  They may also initiate a return to attractive 
regions to search them more thoroughly.  A simple instance of this second type of 
intensification strategy is shown in Figure 4.1.  The strategy for selecting elite solutions is 
italicized in Figure 4.1 due to its importance.  Two variants have proved quite successful.  One 
introduces a diversification measure to assure the solutions recorded differ from each other by 
a desired degree, and then erases all short term memory before resuming from the best of the 
recorded solutions.  A diversification measure may be related to the number of moves that are 
necessary to transform one solution into another.  Or the measure may be defined 
independently from the move mechanism.  For example, in sequencing, two solutions may be 
considered diverse if the number of swaps needed to move from one to the other is “large.”  On 
the other hand, the diversification measure may be the number of jobs that occupy a different 
position in the two sequences being compared.  (This shows that intensification and 
diversification often work together, as elaborated in the next section.) 
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The second variant that has also proved successful, keeps a bounded length sequential list 
that adds a new solution at the end only if it is better than any previously seen.  The current 
last member of the list is always the one chosen (and removed) as a basis for resuming search.  
However, TS short term memory that accompanied this solution is also saved, and the first 
move also forbids the move previously taken from this solution, so that a new solution path will 
be launched. 
 
A third variant of the approach of Figure 4.1 is related to a strategy that resumes the search 
from unvisited neighbors of solutions previously generated.  Such a strategy keeps track of the 
quality of these neighbors to select an elite set, and restricts attention to specific types of 
solutions, such as neighbors of local optima or neighbors of solutions visited on steps 
immediately before reaching such local optima.  This type of “unvisited neighbor” strategy has 
been little examined.  It is noteworthy, however, that the two variants previously indicated have 
provided solutions of remarkably high quality. 
 
Another type of intensification approach is intensification by decomposition, where restrictions 
may be imposed on parts of the problem or solution structure in order to generate a form of 
decomposition that allows a more concentrated focus on other parts of the structure.  A 
classical example is provided by the traveling salesman problem, where edges that belong to 
the intersection of elite tours may be “locked into” the solution, in order to focus on 
manipulating other parts of the tour.  The use of intersections is an extreme instance of a more 
general strategy for exploiting frequency information, by a process that seeks to identify and 
constrain the values of strongly determined and consistent variables.  We discuss the 
identification and use of such variables in Section 4.4.1. 
 
Intensification by decomposition also encompasses other types of strategic considerations, 
basing the decomposition not only on indicators of strength and consistency, but also on 
opportunities for particular elements to interact productively.  Within the context of a 
permutation problem as in scheduling or routing, for example, where solutions may be 
depicted as selecting one or more sequences of edges in a graph, a decomposition may be 
based on identifying subchains of elite solution, where two or more subchains may be assigned 
to a common set if they contain nodes that are “strongly attracted” to be linked with nodes of 
other subchains in the set.  An edge disjoint collection of subchains can be treated by an 
intensification process that operates in parallel on each set, subject to the restriction that the 
identity of the endpoints of the subchains will not be altered.  As a result of the decomposition, 
the best new sets of subchains can be reassembled to create new solutions.  Such a process 
can be applied to multiple alternative decompositions in broader forms of intensification by 
decomposition. 
 

Fig. 4.1  Simple TS intensification approach. 
 
Apply TS short term memory. 
Apply an elite selection strategy. 
do { 
 Choose one of the elite solutions. 
 Resume short term memory TS from chosen solution. 
 Add new solutions to elite list when applicable. 
} while (iterations < limit and list not empty) 
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These ideas are lately finding favor in other procedures, and may provide a bridge for 
interesting components of tabu search with components of other methodologies.  We address 
the connections with these methodologies in Section 5. 

4.3  Diversification Strategies 

Search methods based on local optimization often rely on diversification strategies to increase 
their effectiveness in exploring the solution space defined by a combinatorial optimization 
problem.  Some of these strategies are designed with the chief purpose of preventing searching 
processes from cycling, i.e., from endlessly executing the same sequence of moves (or more 
generally, from endlessly and exclusively revisiting the same set of solutions).  Others are 
introduced to impart additional robustness or vigor to the search.  Genetic algorithms use 
randomization in component processes such as combining population elements and applying 
crossover (as well as occasional mutation), thus providing an approximate diversifying effect.  
Simulated annealing likewise incorporates randomization to make diversification a function of 
temperature, whose gradual reduction correspondingly diminishes the directional variation in 
the objective function trajectory of solutions generated.  Diversification in GRASP (Greedy 
Randomized Adaptive Search Procedures) is achieved in a certain sense within repeated 
construction phases by means of a random sampling over elements that pass a threshold of 
attractiveness by a greedy criterion. 
 
In tabu search, diversification is created to some extent by short term memory functions, but is 
particularly reinforced by certain forms of longer term memory.  TS diversification strategies, as 
their name suggests, are designed to drive the search into new regions. Often they are based on 
modifying choice rules to bring attributes into the solution that are infrequently used.  
Alternatively, they may introduce such attributes by periodically applying methods that 
assemble subsets of these attributes into candidate solutions for continuing the search, or by 
partially or fully restarting the solution process.  Diversification strategies are particularly 
helpful when better solutions can be reached only by crossing barriers or “humps” in the 
solution space topology. 
 
4.3.1 Modifying Choice Rules 

Consider a TS method designed to solve a graph partitioning problem which uses full and 
partial swap moves to explore the local neighborhood.  The goal of this problem is to partition 
the nodes of the graph into two equal subsets so that the sum of the weights of the edges that 
join nodes in one subset to nodes in the other subset is minimized.  Full swaps exchange two 
nodes that lie in two different sets of the partition.  Partial swaps transfer a single node from 
one set to the other set.  Since full swaps do not modify the number of nodes in the two sets of 
the partition, they maintain feasibility, while partial swaps do not.  Therefore, under 
appropriate guidance, one approach to generate diversity is to periodically disallow the use of 
non-improving full swaps for a chosen duration (after an initial period where the search “settles 
down”).  The partial swaps must of course be coordinated to allow feasibility to be recovered 
after achieving various degrees of infeasibility.  (This relates to the approach of strategic 
oscillation, described in Section 4.4.)  Implemented appropriately, this strategy has the effect of 
intelligently perturbing the current solution, while escaping from a local optimum, to an extent 
that the search is directed to a region that is different than the one being currently explored.  
The implementation of this strategy as applied to experimental problems has resulted in 
significant improvements in problem-solving efficacy. 
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The incorporation of partial swaps in place of full swaps in the previous example can be 
moderated by using the following penalty function: 
 

MoveValue′ = MoveValue + d * Penalty. 
 
This type of penalty approach is commonly used in TS, where the Penalty value is often a 
function of frequency measures such as those indicated in Table 4.1, and d is an adjustable 
diversification parameter.  Larger d values correspond to a desire for more diversification.  
(E.g., nodes that change sets more frequently are penalized more heavily to encourage the 
choice of moves that incorporate other nodes.  Negative penalties, or “inducements,” may also 
be used to encourage low frequency elements.)  The penalty can be applied to classes of moves 
as well as to attributes of moves.  Thus, during a phase where full swaps moves are excluded, 
all such moves receive a large penalty (with a value of d that is effectively infinite). 
 
In some applications where d is used to inhibit the selection of “feasibility preserving” moves, 
the parameter can be viewed as the reciprocal of a Lagrangean multiplier in that “low” values 
result in nearly infinite costs for constraint violation, while “high” values allow searching 
through infeasible regions.  The adjustment of such a parameter can be done in a way to 
provide a strategic oscillation around the feasibility boundary, again as discussed in Section 
4.4.  The parameter can also be used to control the amount of randomization in probabilistic 
versions of tabu search. 
 
In TS methods that incorporate the simplex method of linear programming, as in “adjacent 
extreme point approaches” for solving certain nonlinear and mixed-integer programming 
problems, a diversification phase can be designed based on the number of times variables 
become basic.  For example, a diversification step can give preference to bringing a nonbasic 
variable into the basis that has remained out of the basis for a relatively long period 
(cumulatively, or since its most recent inclusion, or a combination of the two).  The number of 
successive iterations such steps are performed, and the frequency with which they are 
initiated, are design considerations of the type that can be addressed, for example, by the 
approach of target analysis (see Section 5). 
 
4.3.2 Restarting 

Frequency information can be used in different ways to design restarting mechanisms within 
tabu search.  In a sequencing problem, for example, the overall frequency of jobs occupying 
certain positions can be used to bias a construction procedure and generate new restarting 
points. 
 
In a TS method for a location/allocation problem, a diversification phase can be developed 
using frequency counts on the number of times a depot has changed its status (from open to 
closed or vice versa).  The diversification phase can be started from the best solution found 
during the search.  Based on the frequency information, d depots with the lowest counts are 
selected and their status is changed.  The search starts from the new solution which differs 
from the best by exactly d components.  To prevent a quick return to the best solution, the 
status of the d depots is also recorded in short term memory.  (This is another case where 
residence frequency measures may provide useful alternatives or supplements to transition 
frequency measures.) 
 
Additional forms of memory functions are possible when a restarting mechanism is 
implemented.  For example, in the location/allocation problem, it is possible to keep track of 
recent sets of depots that were selected for diversification and avoid the same selection in the 
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next diversification phase.  Similarly, in a sequencing problem, the positions occupied by jobs 
in recent starting points can be recorded to avoid future repetition.  This may be viewed as a 
very simple forms of the critical event memory discussed in Section 2, and more elaborate 
forms will often yield greater benefits.  The exploitation of such memory is very important in TS 
designs that are completely deterministic, since in these cases a given starting point will always 
produce the same search path.  Experience also shows, however, that uses of TS memory to 
guide probabilistic forms of restarting can likewise yield benefits (Rochat and Taillard, 1995; 
Fleurent and Glover, 1996; Lokketangen and Glover, 1996). 
 
Before concluding this section, it is appropriate to provide a word of background about the 
orientation underlying diversification strategies within the tabu search framework.  Often there 
appears to be a hidden assumption that diversification is somehow tantamount to 
randomization.  Certainly the introduction of a random element to achieve a diversifying effect 
is a widespread theme among search procedures, and is fundamental to the operation of 
simulated annealing and genetic algorithms.  From an abstract standpoint, there is clearly 
nothing wrong with equating randomization and diversification, but to the extent that diversity 
connotes differences among elements of a set, and to the extent that establishing such 
differences is relevant to an effective search strategy, then the popular use of randomization is 
at best a convenient proxy (and at worst a haphazard substitute) for something quite different. 
 
When randomization is used as part of a restarting mechanism, for example, frequency 
information can be employed to approximate probability distributions that bias the 
construction process.  In this way, randomization is not a “blind” mechanism, but instead it is 
guided by search history.  We examine inappropriate roles of randomization in Section 4.6, 
where we also explore the intensification / diversification distinction more thoroughly. 

4.4  Strategic Oscillation 

Strategic oscillation is closely linked to the origins of tabu search, and provides a means to 
achieve an effective interplay between intensification and diversification over the intermediate 
to long term.  The recurring usefulness of this approach documented in a variety of studies 
warrants a more detailed examination of its characteristics. 
 
Strategic oscillation operates by orienting moves in relation to a critical level, as identified by a 
stage of construction or a chosen interval of functional values.  Such a critical level or 
oscillation boundary often represents a point where the method would normally stop.  Instead 
of stopping when this boundary is reached, however, the rules for selecting moves are modified, 
to permit the region defined by the critical level to be crossed.  The approach then proceeds for 
a specified depth beyond the oscillation boundary, and turns around.  The oscillation boundary 
again is approached and crossed, this time from the opposite direction, and the method 
proceeds to a new turning point (see Figure 4.2). 
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The process of repeatedly approaching and crossing the critical level from different directions 
creates an oscillatory behavior, which gives the method its name.  Control over this behavior is 
established by generating modified evaluations and rules of movement, depending on the 
region navigated and the direction of search.  The possibility of retracing a prior trajectory is 
avoided by standard tabu search mechanisms, like those established by recency-based and 
frequency-based memory functions. 
 
A simple example of this approach occurs for the multidimensional knapsack problem, where 
values of zero-one variables are changed from 0 to 1 until reaching the boundary of feasibility.  
The method then continues into the infeasible region using the same type of changes, but with 
a modified evaluator.  After a selected number of steps, the direction is reversed by choosing 
moves that change variables from 1 to 0.  Evaluation criteria to drive toward improvement vary 
according to whether the movement occurs inside or outside the feasible region (and whether it 
is directed toward or away from the boundary), accompanied by associated restrictions on 
admissible changes to values of variables.  The turnaround towards feasibility can also be 
triggered by a maximum infeasibility value, which defines the depth of the oscillation beyond 
the critical level (i.e., the feasibility boundary). 
 
A somewhat different type of application occurs for graph theory problems where the critical 
level represents a desired form of graph structure, capable of being generated by progressive 
additions (or insertions) of basic elements such as nodes, edges, or subgraphs.  One type of 
strategic oscillation approach for this problem results by a constructive process of introducing 
elements until the critical level is reached, and then introducing further elements to cross the 
boundary defined by the critical level.  The current solution may change its structure once this 
boundary is crossed (as where a forest becomes transformed into a graph that contains loops), 
and hence a different neighborhood may be required, yielding modified rules for selecting 
moves.  The rules again change in order to proceed in the opposite direction, removing 
elements until again recovering the structure that defines the critical level. 
 
In the Min k-Tree problem, for example, edges can be added beyond the critical level defined by 
k.  Then a rule to delete edges must be applied.  The rule to delete edges will typically be 
different in character from the one used for adding (i.e., will not simply be its “inverse”).  In this 
case, all feasible solutions lie on the oscillation boundary, since any deviation from this level 
results in solutions with more or less than k edges. 

Fig. 4.2  Strategic oscillation. 
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Such rule changes are typical features of strategic oscillation, and provide an enhanced 
heuristic vitality.  The application of different rules may be accompanied by crossing a 
boundary to different depths on different sides.  An option is to approach and retreat from the 
boundary while remaining on a single side, without crossing (i.e., electing a crossing of “zero 
depth”). 
 
These examples constitute a constructive/destructive type of strategic oscillation, where 
constructive steps “add” elements (or set variables to 1) and destructive steps “drop” elements 
(or set variables to 0).  (Types of TS memory structures for add / drop moves discussed in 
Section 2 are relevant for such procedures.)  One-sided oscillations (that remain on a single 
side of a critical boundary) are appropriate in a variety of scheduling and graph-related 
applications, where constructive processes are traditionally applied.  The alternation with 
destructive processes that strategically dismantle and then re-build successive trial solutions 
affords a potent enhancement of more traditional procedures.  In both one-sided and two-sided 
oscillation approaches it is frequently important to spend additional search time in regions 
close to the critical level, and especially to spend time at the critical level itself.  This may be 
done by inducing a sequence of tight oscillations about the critical level, as a prelude to each 
larger oscillation that proceeds to a greater depth.  Alternately, if greater effort is permitted for 
evaluating and executing each move, the method may use “exchange moves” (broadly 
interpreted) to stay at the critical level for longer periods.  In the case of the Min k-Tree 
problem, for example, once the oscillation boundary has been reached, the search can stay on 
it by performing swap moves (either of nodes or edges).  An option is to use such exchange 
moves to proceed to a local optimum each time the critical level is reached. 
 
When the level or functional values in Figure 4.2 refer to degrees of feasibility and infeasibility, 
a vector-valued function associated with a set of problem constraints can be used to control the 
oscillation.  In this case, controlling the search by bounding this function can be viewed as 
manipulating a parameterization of the selected constraint set.  A preferred alternative is often 
to make the function a Lagrangean or surrogate constraint penalty function, avoiding vector-
valued functions and allowing tradeoffs between degrees of violation of different component 
constraints. 
 
Intensification processes can readily be embedded in strategic oscillation by altering choice 
rules to encourage the incorporation of particular attributes ⎯ or at the extreme, by locking 
such attributes into the solution for a period.  Such processes can be viewed as designs for 
exploiting strongly determined and consistent variables.  A strongly determined variable is one 
that cannot change its value in a given high quality solution without seriously degrading 
quality or feasibility, while a consistent variable is one that frequently takes on a specific value 
(or a highly restricted range of values) in good solutions.  The development of useful measures 
of “strength” and “consistency” is critical to exploiting these notions,  particularly by 
accounting for tradeoffs determined by context.  However, straightforward uses of frequency-
based memory for keeping track of consistency, sometimes weighted by elements of quality and 
influence, have produced methods with very good performance outcomes. 
 
An example of where these kinds of approaches are also beginning to find favor in other 
settings occurs in recently developed variants of genetic algorithms for sequencing problems.  
The more venturesome of these approaches are coming to use special forms of “crossover” to 
assure offspring will receive attributes shared by good parents, thus incorporating a type of 
intensification based on consistency.  Extensions of such procedures using TS ideas of 
identifying elements that qualify as consistent and strongly determined according to broader 
criteria, and making direct use of memory functions to establish this identification, provide an 
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interesting area for investigation.  (Additional links to GA methods, and ways to go beyond 
current explorations of such methods, are discussed in Section 5.) 
 
Longer term processes, following the type of progression customarily found beneficial in tabu 
search, may explicitly introduce supplemental diversification strategies into the oscillation 
pattern.  When oscillation is based on constructive and destructive processes, the repeated 
application of constructive phases (rather than moving to intermediate levels using destructive 
moves) embodies an extreme type of oscillation that is analogous to a restart method.  In this 
instance the restart point is always the same (i.e., a null state) instead of consisting of different 
initial solutions, and hence it is important to use choice rule variations to assure appropriate 
diversification. 
 
A connection can also be observed between an extreme version of strategic oscillation ⎯ in this 
case a relaxed version ⎯ and the class of procedures known as perturbation approaches.  An 
example is the subclass known as “large-step simulated annealing” or “large-step Markov 
chain” methods (Martin, Otto and Felten, 1991 and 1992; Johnson, 1990; Lourenco and 
Zwijnenburg, 1996).  Such methods try to drive an SA procedure (or an iterated descent 
procedure) out of local optimality by propelling the solution a greater distance than usual from 
its current location. 
 
Perturbation methods may be viewed as loosely structured procedures for inducing oscillation, 
without reference to intensification and diversification and their associated implementation 
strategies.  Similarly, perturbation methods are not designed to exploit tradeoffs created by 
parametric variations in elements such as different types of infeasibility, measures of 
displacement from different sides of boundaries, etc.  Nevertheless, at a first level of 
approximation, perturbation methods seek goals similar to those pursued by strategic 
oscillation. 

4.5  Path Relinking 

A useful integration of intensification and diversification strategies occurs in the approach 
called path relinking.  This approach generates new solutions by exploring trajectories that 
connect elite solutions ⎯ by starting from one of these solutions, called an initiating solution, 
and generating a path in the neighborhood space that leads toward the other solutions, called 
guiding solutions.  This is accomplished by selecting moves that introduce attributes contained 
in the guiding solutions. 
 
The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to 
incorporate attributes of high quality solutions, by creating inducements to favor these 
attributes in the moves selected.  However, instead of using an inducement that merely 
encourages the inclusion of such attributes, the path relinking approach subordinates all other 
considerations to the goal of choosing moves that introduce the attributes of the guiding 
solutions, in order to create a “good attribute composition” in the current solution.  The 
composition at each step is determined by choosing the best move, using customary choice 
criteria, from the restricted set of moves that incorporate a maximum number (or a maximum 
weighted value) of the attributes of the guiding solutions.  As in other applications of TS, 
aspiration criteria can override this restriction to allow other moves of particularly high quality 
to be considered. 
 
Specifically, upon identifying a collection of one or more elite solutions to guide the path of a 
given solution, the attributes of these guiding solutions are assigned preemptive weights as 
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inducements to be selected.  Larger weights are assigned to attributes that occur in greater 
numbers of the guiding solutions, allowing bias to give increased emphasis to solutions with 
higher quality or with special features (e.g., complementing those of the solution that initiated 
the new trajectory). 
 
More generally, it is not necessary for an attribute to occur in a guiding solution in order to 
have a favored status.  In some settings attributes can share degrees of similarity, and in this 
case it can be useful to view a solution vector as providing “votes” to favor or discourage 
particular attributes.  Usually the strongest forms of aspiration criteria are relied upon to 
overcome this type of choice rule. 
 
In a given collection of elite solutions, the role of initiating solution and guiding solutions can 
be alternated.  The distinction between initiating solutions and guiding solutions effectively 
vanishes in such cases.  For example, a set of current solutions may be generated 
simultaneously, extending different paths, and allowing an initiating solution to be replaced (as 
a guiding solution for others) whenever its associated current solution satisfies a sufficiently 
strong aspiration criterion. 
 
Because their roles are interchangeable, the initiating and guiding solutions are collectively 
called reference solutions.  These reference solutions can have different interpretations 
depending on the solution framework under consideration.  Reference points can be created by 
any of a number of different heuristics that result in high quality solutions. 
 
An idealized form of such a process is shown in Figure 4.3.  The chosen collection of reference 
solutions consists of the three members, A, B, and C.  Paths are generated by allowing each to 
serve as initiating solution, and by allowing either one or both of the other two solutions to 
operate as guiding solutions.  Intermediate solutions encountered along the paths are not 
shown.  The representation of the paths as straight lines of course is oversimplified, since 
choosing among available moves in a current neighborhood will generally produce a 
considerably more complex trajectory.  Intensification can be achieved by generating paths 
from similar solutions, while diversification is obtained creating paths from dissimilar 
solutions.  Appropriate aspiration criteria allow deviation from the paths at attractive 
neighbors. 
 
As Figure 4.3 indicates, at least one path continuation is allowed beyond each 
initiating/guiding solution.  Such a continuation can be accomplished by penalizing the 
inclusion of attributes dropped during a trajectory, including attributes of guiding solutions 
that may be compelled to be dropped in order to continue the path.  (An initiating solution may 
also be repelled from the guiding solutions by penalizing the inclusion of their attributes from 
the outset.)  Probabilistic TS variants operate in the path relinking setting, as they do in others, 
by translating evaluations for deterministic rules into probabilities of selection, strongly biased 
to favor higher evaluations. 
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Promising regions are searched more thoroughly in path relinking by modifying the weights 
attached to attributes of the guiding solutions, and by altering the bias associated with 
solution quality and selected solution features.  Figure 4.4 depicts the type of variation that 
can result, where the point X represents an initiating solution, the points A, B and C represent 
guiding solutions, and the dashed, dotted and solid lines are different searching paths.  For 
appropriate choices of the reference points (and neighborhoods for generating paths from 
them), the notion called the Principle of Proximate Optimality (Glover  and Laguna, 1997) 
suggests that additional elite points are likely to be found in the regions traversed by the paths, 
upon launching new searches from high quality points on these paths. 
 

Fig. 4.3  Paths relinking in neighborhood space. 
 

 

Fig. 4.4  Path relinking by attribute bias. 
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4.5.1  Roles in Intensification and Diversification 

Path relinking, in common with strategic oscillation, gives a natural foundation for developing 
intensification and diversification strategies.  Intensification strategies in this setting typically 
choose reference solutions to be elite solutions that lie in a common region or that share 
common features.  Similarly, diversification strategies based on path relinking 
characteristically select reference solutions that come from different regions or that exhibit 
contrasting features.  Diversification strategies may also place more emphasis on paths that go 
beyond the reference points.  Collections of reference points that embody such conditions can 
be usefully determined by clustering and conditional analysis methods. 
 
These alternative forms of path relinking also offer a convenient basis for parallel processing, 
contributing to the approaches for incorporating intensification and diversification tradeoffs 
into the design of parallel solution processes generally.  
 
4.5.2  Incorporating Alternative Neighborhoods 

Path relinking strategies in tabu search can occasionally profit by employing different 
neighborhoods and attribute definitions than those used by the heuristics for generating the 
reference solutions.  For example, it is sometimes convenient to use a constructive 
neighborhood for path relinking, i.e., one that permits a solution to be built in a sequence of 
constructive steps (as in generating a sequence of jobs to be processed on specified machines 
using dispatching rules).  In this case the initiating solution can be used to give a beginning 
partial construction, by specifying particular attributes (such as jobs in particular relative or 
absolute sequence positions) as a basis for remaining constructive steps.  Similarly, path 
relinking can make use of destructive neighborhoods, where an initial solution is “overloaded” 
with attributes donated by the guiding solutions, and such attributes are progressively stripped 
away or modified until reaching a set with an appropriate composition. 
 
When path relinking is based on constructive neighborhoods, the guiding solution(s) provide 
the attribute relationships that give options for subsequent stages of construction.  At an 
extreme, a full construction can be produced, by making the initiating solution a null solution.  
The destructive extreme starts from a “complete set” of solution elements.  Constructive and 
destructive approaches differ from transition approaches by typically producing only a single 
new solution, rather than a sequence of solutions, on each path that leads from the initiating 
solution toward the others.  In this case the path will never reach the additional solutions 
unless a transition neighborhood is used to extend the constructive neighborhood. 
 
Constructive neighborhoods can often be viewed as a special case of feasibility restoring 
neighborhoods, since a null or partially constructed solution does not satisfy all conditions to 
qualify as feasible.  Similarly, destructive neighborhoods can also represent an instance of a 
feasibility restoring function, as where an excess of elements may violate explicit problem 
constraints.  A variety of methods have been devised to restore infeasible solutions to 
feasibility, as exemplified by flow augmentation methods in network problems, subtour 
elimination methods in traveling salesman and vehicle routing problems, alternating chain 
processes in degree-constrained subgraph problems, and value incrementing and decrementing 
methods in covering and multidimensional knapsack problems.  Using neighborhoods that 
permit restricted forms of infeasibilities to be generated, and then using associated 
neighborhoods to remove these infeasibilities, provides a form of path relinking with useful 
diversification features.  Upon further introducing transition neighborhoods, with the ability to 
generate successive solutions with changed attribute mixes, the mechanism of path relinking 
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also gives a way to tunnel through infeasible regions.  The following is a summary of the 
components of path relinking: 
 

Step 1. Identify the neighborhood structure and associated solution attributes 
for path relinking (possibly different from those of other TS strategies 
applied to the problem). 

 
Step 2. Select a collection of two or more reference solutions, and identify which 

members will serve as the initiating solution and the guiding solution(s).  
(Reference solutions can be infeasible, such as “incomplete” or 
“overloaded” solution components treated by constructive or destructive 
neighborhoods.) 

 
Step 3. Move from the initiating solution toward (or beyond) the guiding 

solution(s), generating one or more intermediate solutions as candidates 
to initiate subsequent problem solving efforts.  (If the first phase of this 
step creates an infeasible solution, apply an associated second phase 
with a feasibility restoring neighborhood.) 

 
In Section 5 we will see how the path relinking strategy relates to a strategy called scatter 
search, which provides additional insights into the nature of both approaches. 

4.6  The Intensification / Diversification Distinction 

The relevance of the intensification/diversification distinction is supported by the usefulness of 
TS strategies that embody these notions.  Although both operate in the short term as well as 
the long term, we have seen that longer term strategies are generally the ones where these 
notions find their greatest application. 
 
In some instances we may conceive of intensification as having the function of an intermediate 
term strategy, while diversification applies to considerations that emerge in the longer run.  
This view comes from the observation that in human problem solving, once a short term 
strategy has exhausted its efficacy, the first (intermediate term) response is often to focus on 
the events where the short term approach produced the best outcomes, and to try to capitalize 
on elements that may be common to those events.  When this intensified focus on such events 
likewise begins to lose its power to uncover further improvement, more dramatic departures 
from a short term strategy are undertaken.  (Psychologists do not usually differentiate between 
intermediate and longer term memory, but the fact that memory for intensification and 
diversification can benefit from such differentiation suggests that there may be analogous 
physical or functional differences in human memory structures.)  Over the truly long term, 
however, intensification and diversification repeatedly come into play in ways where each 
depends on the other, not merely sequentially, but also simultaneously. 
There has been some confusion between the terms intensification and diversification, as 
applied in tabu search, and the terms exploitation and exploration, as popularized in the 
literature of genetic algorithms.  The differences between these two sets of notions deserves to 
be clarified, because they have substantially different consequences for problem solving. 
 
The exploitation/exploration distinction comes from control theory, where exploitation refers to 
following a particular recipe (traditionally memoryless) until it fails to be effective, and 
exploration then refers to instituting a series of random changes — typically via multi-armed 
bandit schemes — before reverting to the tactical recipe.  (The issue of exploitation versus 
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exploration concerns how often and under what circumstances the randomized departures are 
launched.) 
 
By contrast, intensification and diversification in tabu search are both processes that take 
place when simpler exploitation designs play out and lose their effectiveness — although as we 
have noted, the incorporation of memory into search causes intensification and diversification 
also to be manifest in varying degrees even in the short range.  (Similarly, as we have noted, 
intensification and diversification are not opposed notions, for the best form of each contains 
aspects of the other, along a spectrum of alternatives.) 
 
Intensification and diversification are likewise different from the control theory notion of 
exploration.  Diversification, which is sometimes confused with exploration, is not a recourse to 
a Game of Chance for shaking up the options invoked, but is a collection of strategies — again 
taking advantage of memory — designed to move purposefully rather than randomly into 
uncharted territory. 
 
The source of these differences is not hard to understand.  Researchers and practitioners in the 
area of search methods have had an enduring love affair with randomization, perhaps 
influenced by the much publicized Heisenberg Uncertainty Principle in Quantum Mechanics.  
Einstein’s belief that God does not roll dice is out of favor, and many find a special 
enchantment in miraculous events where blind purposelessness creates useful order.  (We are 
less often disposed to notice that this way of producing order requires an extravagant use of 
time, and that order, once created, is considerably more effective than randomization in 
creating still higher order.) 
 
Our “scientific” reports of experiments with nature reflect our fascination with the role of 
chance.  When apparently chaotic fluctuations are brought under control by random 
perturbations, we seize upon the random element as the key, while downplaying the 
importance of attendant restrictions on the setting in which randomization operates.  The 
diligently concealed message is that under appropriate controls, perturbation is effective for 
creating desired patterned outcomes — and in fact, if the system and attendant controls are 
sufficiently constrained, perturbation works even when random.  (Instead of accentuating 
differences between workable and unworkable kinds of perturbation, in our quest to mold the 
universe to match our mystique we portray the central consideration to be randomization 
versus nonrandomization.) 
 
The tabu search orientation evidently contrasts with this perspective.  As manifest in the 
probabilistic TS variant, elements subjected to random influence are preferably to be strongly 
confined, and uses of randomization are preferably to be modulated through well differentiated 
probabilities.  In short, the situations where randomization finds a place are very highly 
structured.  From this point of view God may play with dice, but beyond any question the dice 
are loaded. 

4.7 Some Basic Memory Structures for Longer Term Strategies 

To give a foundation for describing fundamental types of memory structures for longer term 
strategies, we first briefly review the form of the recency-based memory structure introduced in 
Section 2 for handling add/drop moves.  However, we slightly change the notation, to provide a 
convenient way to refer to a variety of other types of moves. 
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4.7.1  Conventions 

Let S = {1, 2,..., s} denote an index set for a collection of solution attributes.  For example, the 
indexes i ∈ S may correspond to indexes of zero-one variables xi, or they may be indexes of 
edges that may be added to or deleted from a graph, or the job indexes in a production 
scheduling problem.  More precisely, by the attribute/element distinction discussed in Section 
2, the attributes referenced by S in these cases consist of the specific values assigned to the 
variables, the specific add/drop states adopted by the edges, or positions occupied by the jobs.  
In general, to give a correspondence with developments of Section 3, an index i ∈ S can 
summarize more detailed information; e.g., by referring to an ordered pair (j,k) that summarizes 
a value assignment xj = k or the assignment of job j to position k, etc.  Hence, broadly speaking, 
the index i may be viewed as a notational convenience for representing a pair or a vector. 
 
To keep our description at the simplest level, suppose that each i ∈ S corresponds to a 0-1 
variable xi.  As before, we let Iter denote the counter that identifies the current iteration, which 
starts at 0 and increases by 1 each time a move is made. 
 
For recency-based memory, following the approach indicated in Section 2, when a move is 
executed that causes a variable xi to change its value, we record TabuStart(i) = Iter immediately 
after updating the iteration counter.  (This means that if the move has resulted in xi = 1, then 
the attribute xi = 0 becomes tabu-active at the iteration TabuStart(i).)  Further, we let 
TabuTenure(i) denote the number of iterations this attribute will remain tabu-active.  Thus, by 
our previous design, the recency-based tabu criterion says that the previous value of xi is tabu-
active throughout all iterations such that 
 

TabuStart(i) + TabuTenure(i) ≤ Iter. 
 
Similarly, in correspondence with earlier remarks, the value TabuStart(i) can be set to 0 before 
initiating the method, as a convention to indicate no prior history exists.  Then we 
automatically avoid assigning a tabu-active status to any variable with TabuStart(i) = 0 (since 
the starting value for variable xi has not yet been changed). 
 
4.7.2  Frequency-Based Memory 

By our foregoing conventions, allowing the set S = {1, …, s} for illustration purposes to refer to 
indexes of 0-1 variables xi, we may indicate structures to handle frequency-based memory as 
follows. 
 
Transition frequency-based memory is by far the simplest to handle.  A transition memory, 
Transition(i), to record the number of times xi changes its value, can be maintained simply in 
the form of a counter for xi that is incremented at each move where such a change occurs.  
Since xi is a zero-one variable, Transition(i) also discloses the number of times xi changes to and 
from each of its possible assigned values. In more complex situations, by the conventions 
already noted, a matrix memory Transition(j,k) can be used to determine numbers of transitions 
involving assignments such as xj = k.  Similarly, a matrix memory may be used in the case of 
the sequencing problem where both the index of job j and position k may be of interest.  In the 
context of the Min k-Tree problem, an array dimensioned by the number of edges can maintain 
a transition memory to keep track of the number of times that specific edges have been 
brought in and out of the solution.  A matrix based on the edges can also identify conditional 
frequencies.  For example, the matrix Transition(j,k) can be used to count the number of times 
edge j replaced edge k.  It should be kept in mind in using transition frequency memory that 
penalties and inducements are often based on relative numbers (rather than absolute 
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numbers) of transitions, hence requiring that recorded transition values are divided by the total 
number of iterations (or the total number of transitions).  As noted earlier, other options 
include dividing by the current maximum transition value.  Raising transition values to a 
power, as by squaring, is often useful to accentuate the differences in relative frequencies. 
 
Residence memory requires only slightly more effort to maintain than transition memory, by 
taking advantage of the recency-based memory stored in TabuStart(i).  The following approach 
can be used to track the number of solutions in which xi = 1 , thereby allowing the number of 
solutions in which xi = 0 to be inferred from this.  Start with Residence(i) = 0 for all i.  Then, 
whenever xi changes from 1 to 0, after updating Iter but before updating TabuStart(i), set 
 

Residence(i) = Residence(i) + Iter - TabuStart(i). 
 
Then, during iterations when xi = 0, Residence(i) correctly stores the number of earlier 
solutions in which xi = 1.  During iterations when xi = 1, the true value of Residence(i) is the 
right hand side of the preceding assignment, however the update only has to be made at the 
indicated points when xi changes from 1 to 0.  Table 4.2 illustrates how this memory structure 
works when used to track the assignments of a variable x during 100 iterations.  The variable 
is originally assigned to a value of zero by a construction procedure that generates an initial 
solution.  In iteration 10 a move is made that changes the assignment of x from zero to one, 
however the Residence value remains at zero.  Residence is updated at iterations 22 and 73, 
when moves are made that change the assignment of x from 1 to 0.  At iteration 65, for 
example, x has received a value of 1 for 27 iterations (i.e., Residence + Iter - TabuStart = 12 + 
65 - 50 = 27), while at iteration 90 the count is 35 (i.e., the value of Residence). 
 

 
As with transition memory, residence memory should be translated into a relative as a basis for 
creating penalties and inducements. 
 
The indicated memory structures can readily be applied to multivalued variables (or multistate 
attributes) by the extended designs illustrated in Section 3.  In addition, the 0-1 format can be 
adapted to reference the number of times (and last time) a more general variable changed its 
value, which leads to more restrictive tabu conditions and more limiting (“stronger”) uses of 
frequency-based memory than by referring separately to each value the variable receives.  As in 
the case of recency-based memory, the ability to affect larger numbers of alternative moves by 
these more aggregated forms of memory can be useful for larger problems, not only for 
conserving memory space but also for providing additional control over solutions generated. 
 
4.7.3  Critical Event Memory 

Strategic oscillation offers an opportunity to make particular use of both short term and long 
term frequency-based memory.  To illustrate, let A(Iter) denote a zero-one vector whose jth 

Table 4.2  Illustrative residence memory. 
Iter Assignment Residence 

 0 x = 0 0 
 10 x = 1 0 
 22 x = 0 22 - 10 = 12 
 50 x = 1 12 
 73 x = 0 12 + 73 -50 = 

35 
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component has the value 1 if attribute j is present in the current solution and has the value 0 
otherwise.  The vector A can be treated “as if” it is the same as the solution vector for zero-one 
problems, though implicitly it is twice as large, since xj = 0 is a different attribute from xj = 1.  
This means that rules for operating on the full A must be reinterpreted for operating on the 
condensed form of A.  The sum of the A vectors over the most recent t critical events provides a 
simple memory that combines recency and frequency considerations.  To maintain the sum 
requires remembering A(k), for k ranging over the last t iterations.  Then the sum vector A* can 
be updated quite easily by the incremental calculation 
 

A* = A* + A(Iter) - A(Iter - t + 1). 
 
Associated frequency measures, as noted earlier, may be normalized, in this case for example 
by dividing A* by the value of t.  A long term form of A* does not require storing the A(k) vectors, 
but simply keeps a running sum.  A* can also be maintained by exponential smoothing. 
 
Such frequency-based memory is useful in strategic oscillation where critical events are chosen 
to be those of generating a complete (feasible) construction, or in general of reaching the 
targeted boundary (or a best point within a boundary region).  Instead of using a customary 
recency-based TS memory at each step of an oscillating pattern, greater flexibility results by 
disregarding tabu restrictions until reaching the turning point, where the oscillation process 
alters its course to follow a path toward the boundary.  At this point, assume a choice rule is 
applied to introduce an attribute that was not contained in any recent solution at the critical 
level.  If this attribute is maintained in the solution by making it tabu to be dropped, then upon 
eventually reaching the critical level the solution will be different from any seen over the 
horizon of the last t critical events.  Thus, instead of updating A* at each step, the updating is 
done only for critical level solutions, while simultaneously enhancing the flexibility of making 
choices. 
 
In general, the possibility occurs that no attribute exists that allows this process to be 
implemented in the form stated.  That is, every attribute may already have a positive associated 
entry in A*.  Thus, at the turn around point, the rule instead is to choose a move that 
introduces attributes which are least frequently used.  (Note, “infrequently used” can mean 
either “infrequently present” or “infrequently absent,” depending upon the current direction of 
oscillation.)  This again can be managed conveniently by using penalties and inducements.  
Such an approach has been found very effective for multidimensional knapsack problems and 
0-1 quadratic optimization problems in Glover and Kochenberger (1996) and Glover, 
Kochenberger and Alidaee (1998). 
 
For greater diversification, this rule can be applied for r steps after reaching the turn around 
point.  Normally r should be a small number, e.g., with a baseline value of 1 or 2, which is 
periodically increased in a standard diversification pattern.  Shifting from a short term A* to a 
long term A* creates a global diversification effect.  A template for this approach is given in 
Figure 4.5. 
 
The approach of Figure 4.5 is not symmetric.  An alternative form of control is to seek 
immediately to introduce a low frequency attribute upon leaving the critical level, to increase 
the likelihood that the solution at the next turn around will not duplicate a solution previously 
visited at that point.  Such a control enhances diversity, though duplication at the turn around 
will already be inhibited by starting from different solutions at the critical level. 
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5.  Connections, Hybrid Approaches and Learning 

Relationships between tabu search and other procedures like simulated annealing and genetic 
algorithms provide a basis for understanding similarities and contrasts in their philosophies, 
and for creating potentially useful hybrid combinations of these approaches.  We offer some 
speculation on preferable directions in this regard, and also suggest how elements of tabu 
search can add a useful dimension to neural network approaches. 
 
From the standpoint of evolutionary strategies, we trace connections between population based 
models for combining solutions, as in genetic algorithms, and ideas that emerged from 
surrogate constraint approaches for exploiting optimization problems by combining 
constraints.  We show how this provides the foundation for methods that give additional 
alternatives to genetic-based frameworks, specifically as embodied in the scatter search 
approach, which is the “primal complement” to the dual strategy of surrogate constraint 
approaches.  Recent successes by integrating scatter search (and its path relinking extensions) 
with tabu search disclose potential advantages for evolutionary strategies that incorporate 
adaptive memory. 
 
Finally, we describe the learning approach called target analysis, which provides a way to 
determine decision parameters for deterministic and probabilistic strategies — and thus affords 
an opportunity to create enhanced solution methods. 

5.1  Simulated Annealing 

The contrasts between simulated annealing and tabu search are fairly conspicuous, though 
undoubtedly the most prominent is the focus on exploiting memory in tabu search that is 
absent from simulated annealing.  The introduction of this focus entails associated differences 
in search mechanisms, and in the elements on which they operate.  Accompanying the 

Fig. 4.5  Strategic oscillation illustrative memory. 
 

 
 
* For selected part of critical level iterations:  e.g., for first and best solutions of 
current block 

Critical Level

Update critical attribute frequencies *
(short and long term)

Maintain level for s iterations

Turn Around Point

Favor (the inclusion of) low frequency
critical attributes for first “small r” steps of

the following “Advance.”

Advance

Low frequency attributes
added during first “small r”

steps are Tabu to drop.

Retreat

(In chosen direction)
Constructive or 
Destructive, etc.
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differences directly attributable to the focus on memory, and also magnifying them, several 
additional elements are fundamental for understanding the relationship between the methods.  
We consider three such elements in order of increasing importance. 
 
First, tabu search emphasizes scouting successive neighborhoods to identify moves of high 
quality, as by candidate list approaches of the form described in Section 3.  This contrasts with 
the simulated annealing approach of randomly sampling among these moves to apply an 
acceptance criterion that disregards the quality of other moves available.  (Such an acceptance 
criterion provides the sole basis for sorting the moves selected in the SA method.)  The 
relevance of this difference in orientation is accentuated for tabu search, since its 
neighborhoods include linkages based on history, and therefore yield access to information for 
selecting moves that is not available in neighborhoods of the type used in simulated annealing. 
 
Next, tabu search evaluates the relative attractiveness of moves not only in relation to objective 
function change, but in relation to additional factors that represent quality, which are balanced 
over time with factors that represent influence.  Both types of measures are affected by the 
differentiation among move attributes, as embodied in tabu activation rules and aspiration 
criteria, and in turn by relationships manifested in recency, frequency, and sequential 
interdependence (hence, again, involving recourse to memory).  Other aspects of the state of 
search also affect these measures, as reflected in the altered evaluations of strategic oscillation, 
which depend on the direction of the current trajectory and the region visited. 
 
Finally TS emphasizes guiding the search by reference to multiple thresholds, reflected in the 
tenures for tabu-active attributes and in the conditional stipulations of aspiration criteria.  
This may be contrasted to the simulated annealing reliance on guiding the search by reference 
to the single threshold implicit in the temperature parameter.  The treatment of thresholds by 
the two methods compounds this difference between them.  Tabu search varies its thresholds 
nonmonotonically, reflecting the conception that multidirectional parameter changes are 
essential to adapt to different conditions, and to provide a basis for locating alternatives that 
might otherwise be missed.  This contrasts with the simulated annealing philosophy of 
adhering to a temperature parameter that only changes monotonically. 
 
Hybrids are now emerging that are taking preliminary steps to bridge some of these differences, 
particularly in the realm of transcending the simulated annealing reliance on a monotonic 
temperature parameter. A hybrid method that allows temperature to be strategically 
manipulated, rather than progressively diminished, has been shown to yield improved 
performance over standard SA approaches.  A hybrid method that expands the SA basis for 
move evaluations also has been found to perform better than standard simulated annealing.  
Consideration of these findings invites the question of whether removing the memory 
scaffolding of tabu search and retaining its other features may yield a viable method in its own 
right.  For example, experience cited in some of the studies reported in Glover and Laguna 
(1997) suggests that, while a memoryless version of tabu search called tabu thresholding can 
outperform a variety of alternative heuristics, it generally does not match the performance of 
TS methods that appropriately exploit memory. 

5.2  Genetic Algorithms 

Genetic algorithms offer a somewhat different set of comparisons and contrasts with tabu 
search.  GAs are based on selecting subsets (traditionally pairs) of solutions from a population, 
called parents, and combining them to produce new solutions called children.  Rules of 
combination to yield children are based on the genetic notion of crossover, which in the 
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classical form consists of interchanging solution values of particular variables, together with 
occasional operations such as random value changes.  Children that pass a survivability test, 
probabilistically biased to favor those of superior quality, are then available to be chosen as 
parents of the next generation.  The choice of parents to be matched in each generation is 
based on random or biased random sampling from the population (in some parallel versions 
executed over separate subpopulations whose best members are periodically exchanged or 
shared).  Genetic terminology customarily refers to solutions as chromosomes, variables as 
genes, and values of variables as alleles. 
 
By means of coding conventions, the genes of genetic algorithms may be compared to 
attributes in tabu search.  Introducing memory in GAs to track the history of genes and their 
alleles over subpopulations would provide an immediate and natural way to create a hybrid 
with TS. 
 
Some important differences between genes and attributes are worth noting, however.  The 
implicit differentiation of attributes into from and to components, each having different memory 
functions, does not have a counterpart in genetic algorithms.  A from attribute is one that is 
part of the current solution but is not included in the next solution once a move is made. A to 
attribute is one that is not part of the current solution but becomes part of the next solution 
once a move is made.  The lack of this type of differentiation in GAs results because these 
approaches are organized to operate without reference to moves (although, strictly speaking, 
combination by crossover can be viewed as a special type of move 
 
A contrast to be noted between genetic algorithms and tabu search arises in the treatment of 
context, i.e., in the consideration given to structure inherent in different problem classes.  For 
tabu search, context is fundamental, embodied in the interplay of attribute definitions and the 
determination of move neighborhoods, and in the choice of conditions to define tabu 
restrictions.  Context is also implicit in the identification of amended evaluations created in 
association with longer term memory, and in the regionally dependent neighborhoods and 
evaluations of strategic oscillation. 
 
At the opposite end of the spectrum, GA literature has traditionally stressed the freedom of its 
rules from the influence of context.  Crossover, in particular, is supposedly a context neutral 
operation, which assumes no reliance on conditions that solutions must obey in a particular 
problem setting, just as genes make no reference to the environment as they follow their 
instructions for recombination (except, perhaps, in the case of mutation).  Practical application, 
however, generally renders this an inconvenient assumption, making solutions of interest 
difficult to find.  Consequently,  a good deal of effort in GA implementation is devoted to 
developing “special crossover” operations that compensate for the difficulties created by 
context, effectively reintroducing it on a case by case basis. 
 
The chief method by which modern genetic algorithms handle structure is by relegating its 
treatment to some other method.  For example, genetic algorithms combine solutions by their 
parent-children processes at one level, and then a descent method may be introduced to 
operate on the resulting solutions to produce new solutions.  These new solutions in turn are 
submitted to be recombined by the GA processes.  In these versions, genetic algorithms already 
take the form of hybrid methods.  Hence there is a natural basis for marrying GA and TS 
procedures in such approaches.  But genetic algorithms and tabu search also can be joined in 
a more fundamental way. 
 
Specifically, tabu search strategies for intensification and diversification are based on the 
following question:  how can information be extracted from a set of good solutions to help 
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uncover additional (and better) solutions?  From one point of view, GAs provide an approach 
for answering this question, consisting of putting solutions together and interchanging 
components (in some loosely defined sense, if traditional crossover is not strictly enforced).  
Tabu search, by contrast, seeks an answer by utilizing processes that specifically incorporate 
neighborhood structures into their design. 
 
Augmented by historical information, neighborhood structures are used as a basis for applying 
penalties and incentives to induce attributes of good solutions to become incorporated into 
current solutions.  Consequently, although it may be meaningless to interchange or otherwise 
incorporate a set of attributes from one solution into another in a wholesale fashion, as 
attempted in traditional GA recombination operations, a stepwise approach to this goal 
through the use of neighborhood structures is entirely practicable.  This observation provides a 
motive for creating structured combinations of solutions that embody desired characteristics 
such as feasibility — as is automatically achieved by the TS approach of path relinking 
discussed in Section 4.  Instead of being compelled to create new types of crossover to remove 
deficiencies of standard operators upon being confronted by changing contexts, this approach 
addresses context directly and makes it an essential part of the design for generating 
combinations. 
 
The current trend of genetic algorithms seems to be increasingly compatible with this 
perspective, and could provide a basis for a useful hybrid combination of genetic algorithm and 
tabu search ideas.  However, a fundamental question emerges, as posed in the development of 
the next sections, about whether there is any advantage to introducing genetic crossover-based 
ideas over introducing the apparently more flexible and exploitable path relinking ideas. 
 
9.2.1  Models of Nature — Beyond “Genetic Metaphors” 

An aspect of tabu search that is often misunderstood concerns the relation between a subset of 
its strategies and certain approaches embodied in genetic algorithms.  TS researchers have 
tended sometimes to overlook the part of the adaptive memory focus that is associated with 
strategies for combining sets of elite solutions.  Complementing this, GA researchers have been 
largely unaware that such a collection of strategies outside their domain exists.  This has quite 
possibly been due to the influence of the genetic metaphor,  which on the one hand has helped 
to launch a number of useful problem solving ideas, and on the other hand has also sometimes 
obscured fertile connections to ideas that come from different foundations. 
 
To understand the relevant ties, it is useful to go back in time to examine the origins of the GA 
framework and of an associated set of notions that became embodied in TS strategies.  We will 
first sketch the original genetic algorithm design (see Figure 5.2), as characterized in Holland 
(1975).  Our description is purposely somewhat loose, to be able to include approaches more 
general than the specific proposals that accompanied the introduction of GAs.  Many variations 
and changes have come about over the years, as we subsequently observe. 
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A somewhat different model for combining elements of a population comes from a class of 
relaxation strategies in mathematical optimization known as surrogate constraint methods 
(Glover, 1965).  The goal of these approaches is to generate new constraints that capture 
information not contained in the original problem constraints taken independently, but which 
is implied by their union.  We will see that some unexpected connections emerge between this 
development and that of genetic algorithms. 
 
The information-capturing focus of the surrogate constraint framework has the aim of 
developing improved methods for solving difficult optimization problems by means of (a) 
providing better criteria for choice rules to guide a search for improved solutions, (b) inferring 
new bounds (constraints with special structures) to limit the space of solutions examined.  (The 
basic framework and strategies for exploiting it are given in Glover (1965, 1968, 1975b), 
Greenberg and Pierskalla (1970, 1973), Karwan and Rardin (1976, 1979), and Freville and 
Plateau (1986, 1993).)  Based on these objectives, the generation of new constraints proceeds 
as indicated in Figure 5.3. 
 

Fig. 5.2  Genetic algorithm template. 
 
1) Begin with a population of binary vectors. 
 
2) Operate repeatedly on the current generation of vectors, 

for a selected number of steps, choosing two “parent 
vectors” at random. Then mate the parents by exchanging 
certain of their components to produce offspring.  (The 
exchange, called “crossover,” was originally designed to 
reflect the process by which chromosomes exchange 
components in genetic mating and, in common with the 
step of selecting parents themselves, was organized to rely 
heavily on randomization.  In addition, a “mutation” 
operation is occasionally allowed to flip bits at random.) 

 
3) Apply a measure of fitness to decide which offspring 

survive to become parents for the next generation.  When 
the selected number of matings has been performed for 
the current generation, return to the start of Step 2 to 
initiate the mating of the resulting new set of parents. 

 
4) Carry out the mating-and-survival operation of Steps 2 

and 3 until the population becomes stable or until a 
chosen number of iterations has elapsed. 
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A natural first impression is that the surrogate constraint design is quite unrelated to the GA 
design, stemming from the fact that the concept of combining constraints seems inherently 
different from the concept of combining vectors.  However in many types of problem 
formulations, including those where surrogate constraints were first introduced, constraints 
are summarized by vectors.  More particularly, over time, as the surrogate constraint approach 
became embedded in both exact and heuristic methods, variations led to the creation of a 
“primal counterpart” called scatter search.  The scatter search approach combines solution 
vectors by rules patterned after those that govern the generation of new constraints, and 
specifically inherits the strategy of exploiting linear combinations and inference (Glover, 1977). 

5.3  Scatter Search 

The scatter search process, building on the principles that underlie the surrogate constraint 
design, is organized to (1) capture information not contained separately in the original vectors, 

Fig. 5.3  Surrogate constraint template. 
 
1) Begin with an initial set of problem constraints (chosen to 

characterize all or a special part of the feasible region for the 
problem considered). 

 
2) Create a measure of the relative influence of the constraints 

as basis for combining subsets to generate new constraints.  
The new (surrogate) constraints, are created from 
nonnegative linear combinations of other constraints, 
together with cutting planes inferred from such 
combinations.  (The goal is to determine surrogate 
constraints that are most effective for guiding the solution 
process.) 

 
3) Change the way the constraints are combined, based on the 

problem constraints that are not satisfied by trial solutions 
generated relative to the surrogate constraints, accounting 
for the degree to which different source constraints are 
violated.  Then process the resulting new surrogate 
constraints to introduce additional inferred constraints 
obtained from bounds and cutting planes.  (Weaker 
surrogate constraints and source constraints that are 
determined to be redundant are discarded.) 

 
4) Change the way the constraints are combined, based on the 

problem constraints that are not satisfied by trial solutions 
generated relative to the surrogate constraints, accounting 
for the degree to which different source constraints are 
violated.  Then process the resulting new surrogate 
constraints to introduce additional inferred constraints 
obtained from bounds and cutting planes.  (Weaker 
surrogate constraints and source constraints that are 
determined to be redundant are discarded.) 
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(2) take advantage of auxiliary heuristic solution methods to evaluate the combinations 
produced and to generate new vectors.   

The original form of scatter search may be sketched as in Figure 5.4. 
 

 
Three particular features of scatter search deserve mention.  First, the linear combinations are 
structured according to the goal of generating weighted centers of selected subregions, allowing 
for nonconvex combinations that project these centers into regions external to the original 
reference solutions.  The dispersion pattern created by such centers and their external 
projections is particularly useful for mixed integer optimization.  Second, the strategies for 
selecting particular subsets of solutions to combine in Step 2 are designed to make use of 
clustering, which allows different types of strategic variation by generating new solutions 
“within clusters” and “across clusters”.  Third, the method is organized to use supporting 
heuristics that are able to start from infeasible solutions, and hence which remove the 
restriction that solutions selected as starting points for re-applying the heuristic processes 
must be feasible. In sum, scatter search is founded on the following premises. 
 

(P1) Useful information about the form (or location) of optimal solutions is 
typically contained in a suitably diverse collection of elite solutions.   

(P2) When solutions are combined as a strategy for exploiting such information, 
it is important to provide for combinations that can extrapolate beyond the 
regions spanned by the solutions considered, and further to incorporate 
heuristic processes to map combined solutions into new points.  (This 
serves to provide both diversity and quality.) 

(P3) Taking account of multiple solutions simultaneously, as a foundation for 
creating combinations, enhances the opportunity to exploit information 
contained in the union of elite solutions. 

 

Fig. 5.4  Scatter search procedure. 
 
1) Generate a starting set of solution vectors by heuristic 

processes designed for the problem considered, and 
designate a subset of the best vectors to be reference 
solutions.  (Subsequent iterations of this step, transferring 
from Step 3 below, incorporate advanced starting 
solutions and best solutions from previous history as 
candidates for the reference solutions.)   

2) Create new points consisting of linear combinations of 
subsets of the current reference solutions.  The linear 
combinations are:   

 (a) chosen to produce points both inside and outside the 
convex regions spanned by the reference solutions.   

 (b) modified by generalized rounding processes to yield 
integer values    for integer-constrained vector 
components.   

3) Extract a collection of the best solutions generated in 
Step 2 to be used as starting points for a new application 
of the heuristic processes of Step 1.  Repeat these steps 
until reaching a specified iteration limit. 
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The fact that the heuristic processes of scatter search are not restricted to a single uniform 
design, but represent a varied collection of procedures, affords additional strategic possibilities.  
This theme also shares a link with the original surrogate constraint proposal, where heuristics 
for surrogate relaxations are introduced to improve the application of exact solution methods.  In 
combination, the heuristics are used to generate strengthened surrogate constraints and, 
iteratively applied, to generate trial solutions for integer programming problems. 
 
The catalog in Figure 5.5 traces the links between the conceptions underlying scatter search 
and conceptions that have been introduced over time as amendments to the GA framework. 
 
These innovations in the GA domain, which have subsequently been incorporated in a wide 
range of studies, are variously considered to be advances or heresies according to whether they 
are viewed from liberal or traditional perspectives.  Significantly, their origins are somewhat 
diffuse, rather than integrated within a single framework. 

 
It is clear that a number of the elements of the scatter search approach remain outside of the 
changes brought about by these proposals.  A simple example is the approach of introducing 
adaptive rounding processes for mapping fractional components into integers.  There also has 
conspicuously been no GA counterpart to the use of clustering to create strategic groupings of 

Fig. 5.5 Scatter search features (1977) incorporated into non-
traditional GA approaches.  

 
• Introduction of “flexible crossover operations.”  (Scatter 

search combinations include all possibilities generated by 
the early GA crossover operations, and also include all 
possibilities embedded in the more advanced “uniform” and 
“Bernoulli” crossovers (Ackley (1987), Spears and DeJong 
(1991)).  Path relinking descendants of scatter search 
provide further possibilities, noted subsequently.)  

 
• Use of heuristic methods to improve solutions generated 

from processes for combining vectors (Muhlenbein et al. 
(1988), Ulder et al. (1991)), (Whitley, Gordon and Mathias 
(1994)).  

 
• Exploitation of vector representations that are not restricted 

to binary representations (Davis (1989), Eschelman and 
Schaffer (1992)).  

 
• Introduction of special cases of linear combinations for 

operating on  continuous vectors (Davis (1989), Wright 
(1990), Bäck et al. (1991), Michalewicz and Janikow (1991)).  

 
• Use of combinations of more than two parents 

simultaneously to produce offspring (Eiben et al. (1994), 
Mühlenbein and Voight (1996)).  

 
• Introduction of strategies that subdivide the population into 

different groupings (Mühlenbein and Schlierkamp-Voosen 
(1994)).  
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points, nor (as a result) to the notion of combining points according to distinctions between 
membership in different clusters.  (The closest approximation to this has been the use of 
“island populations” that evolve separately, but without concern for analyzing or subdividing 
populations based on inference and clustering.) 
 
The most important distinction, however, is the link between scatter search and the theme of 
exploiting history.  The prescriptions for combining solutions within scatter search are part of a 
larger design for taking advantage of information about characteristics of previously generated 
solutions to guide current search.  In retrospect, it is perhaps not surprising that such a 
design should share an intimate association with the surrogate constraint framework, with its 
emphasis on extracting and coordinating information across different solution phases.  This 
orientation, which takes account of elements such as the recency, frequency and quality of 
particular value assignments, clearly shares a common foundation with notions incorporated 
within tabu search.  (The same reference on surrogate constraint strategies that is the starting 
point for scatter search is also often cited as a source of early TS conceptions.)  By this means, 
the link between tabu search and so-called “evolutionary” approaches also becomes apparent.  
The term evolutionary has undergone an interesting evolution of its own.  By a novel turn, the 
term “mutation” in the GA terminology has become reinterpreted to refer to any form of change, 
including the purposeful change produced by a heuristic process.  As a result, all methods that 
apply heuristics to multiple solutions, whether or not they incorporate strategies for combining 
solutions, are now considered kindred to genetic algorithms, and the enlarged collection is 
labeled “evolutionary methods.”  (This terminology accordingly has acquired the distinction of 
embracing nearly every kind of method conceivable.) 
 
5.3.1  Modern Forms and Applications of Scatter Search 

Recent implementations of scatter search (cited below) have taken advantage of the implicit 
learning capabilities provided by the tabu search framework, leading to refined methods for 
determining reference points and for generating new points.  Current scatter search versions 
have also introduced more sophisticated mechanisms to map fractional values into integer 
values.  This work is reinforced by  new theorems about searches over spaces of zero-one 
integer variables.  Special models have also been developed to allow both heuristic and exact 
methods to transform infeasible trial points into feasible points.  Finally, scatter search is the 
source of the broader class of path relinking methods, as described in Section 4, which offer a 
wide range of mechanisms for creating productive combinations of reference solutions.  A brief 
summary of some of these developments appears in Figure 5.6. 
 
Implementation of various components of these extensions have provided advances for solving 
general nonlinear mixed discrete optimization problems with both linear and nonlinear 
constraints, as noted in the references cited under Recommended Reading. 
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5.3.2  Scatter Search and Path Relinking Interconnections 

The relation between scatter search and path relinking sheds additional light on the character 
of these approaches.  As already remarked, path relinking is a direct extension of scatter 
search.  The way this extension comes about is as follows. 
 
From a spatial orientation, the process of generating linear combinations of a set of reference 
points may be characterized as generating paths between and beyond these points (where 
points on such paths also serve as sources for generating additional points).  This leads to a 
broader conception of the meaning of combinations of points.  That is, by natural extension, we 
may conceive such combinations to arise by generating paths between and beyond selected 
points in neighborhood space, rather than in Euclidean space. 
 
The form of these paths in neighborhood space is easily specified by reference to attribute-
based memory, as used in tabu search.  The path relinking strategy thus emerges as a direct 
consequence.  Just as scatter search encompasses the possibility to generate new solutions by 
weighting and combining more than two reference solutions at a time, path relinking includes 
the possibility to generate new solutions by multi-parent path constructions that incorporate 
attributes from a set of guiding solutions, where these attributes are weighted to determine 
which moves are given higher priority, as we have seen in Section 4.  The name path relinking 
comes from the fact that the generation of such paths in neighborhood space characteristically 
“relinks” previous points in ways not achieved in the previous search history. 
 

Fig. 5.6  Scatter Search Extensions. 
 
• Tabu search memory is used to select current reference points from a historical pool 

(Glover, 1989, 1994a). 
 
• Tabu search intensification and diversification strategies guide the generation of 

new points (Fleurent et al. 1996; Glover, Laguna and Marti, 2000). 
 
• Solutions generated as “vector combinations” are further improved by explicit tabu 

search guidance (Trafalis and Al-Harkan, 1995; Glover, Kelly and Laguna, 1996; 
Fleurent et al., 1996; Cung, et al. 1997). 

 
• Directional rounding processes focus the search for feasible zero-one solutions 

allowing them to be mapped into convex subregions of hyperplanes produced by 
valid cutting plane inequalities (Glover, 1995a). 

 
• Neural network learning is applied to filter out promising and unpromising points 

for further examination, and pattern analysis is used to predict the location of 
promising new solutions (Glover, Kelly and Laguna, 1996). 

 
• Mixed integer programming models generate sets of diversified points, and yield 

refined procedures for mapping infeasible points into feasible points (Glover, Kelly 
and Laguna, 1996). 

 
• Structured combinations of points take the role of linear combinations, to expand 

the range of alternatives generated (Glover, 1994a). 
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The relevance of these concepts as a foundation for evolutionary procedures is illustrated by 
recent applications of scatter search and path relinking which have disclosed the promise of 
these approaches for solving a variety of optimization problems.  A sampling of such 
applications includes: 
 

• Vehicle Routing – Rochat and Taillard (1995); Taillard (1996)  
• Quadratic Assignment – Cung et al. (1996) 
• Financial Product Design – Consiglio and Zenios (1999) 
• Neural Network Training  – Kelly, Rangaswamy and Xu (1996) 
• Job Shop Scheduling – Yamada and Nakano (1996) 
• Flow Shop Scheduling – Yamada and Reeves (1997) 
• Graph Drawing – Laguna and Marti (1999) 
• Linear Ordering – Laguna, Marti and Campos (1997) 
• Unconstrained Continuous Optimization – Fleurent et al. (1996) 
• Bit Representation – Rana and Whitley (1997) 
• Optimizing Simulation – Glover, Kelly and Laguna (1996) 
• Complex System Optimization – Laguna (1997) 

 
It is additionally useful to note that re-expressing scatter search relative to neighborhood space 
— as done in path relinking — also leads to more general forms of scatter search in Euclidean 
space.  The form of path relinking manifested in vocabulary building (which results by using 
constructive and destructive neighborhoods to create and reassemble components of 
solutions), also suggests the relevance of combining solutions in Euclidean space by allowing 
different linear combinations to be created for different solution components.  The design 
considerations that underlie vocabulary building generally carry over to this particular instance 
(see Glover and Laguna, 1997). 
 
The broader conception of solution combinations provided by path relinking has useful 
implications for evolutionary procedures.  The exploitation of neighborhood space and 
attribute-based memory gives specific, versatile mechanisms for achieving such combinations, 
and provides a further interesting connection between tabu search proposals and genetic 
algorithm proposals.  In particular, many recently developed “crossover operators,” which have 
no apparent relation between each other in the GA setting, can be shown to arise as special 
instances of path relinking, by restricting attention to two reference points (taken as parents in 
GAs), and by replacing the strategic neighborhood guidance of path relinking with a reliance on 
randomization.  In short, the options afforded by path relinking for combining solutions are 
more unified, more systematic and more encompassing than those provided by the “crossover” 
concept, which changes from instance to instance and offers no guidance for how to take 
advantage of any given context. 

5.4 Greedy Randomized Adaptive Search Procedures (GRASP) 

The GRASP methodology was developed in the late 1980s, and the acronym was coined by Tom 
Feo (Feo and Resende, 1995).  It was first used to solve computationally difficult set covering 
problems (Feo and Resende, 1989).  Each GRASP iteration consists of constructing a trial 
solution and then applying an exchange procedure to find a local optimum (i.e., the final 
solution for that iteration).  The construction phase is iterative, greedy, and adaptive.  It is 
iterative because the initial solution is built considering one element at a time.  It is greedy 
because the addition of each element is guided by a greedy function.  It is adaptive because the 
element chosen at any iteration in a construction is a function of those previously chosen.  
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(That is, the method is adaptive in the sense of updating relevant information form iteration to 
iteration, as in most constructive procedures.)  The improvement phase typically consists of a 
local search procedure. 
 
For illustration purposes, consider the design of a GRASP for the 2-partition problem (see, e.g., 
Laguna et al., 1994).  This problem consists of clustering the nodes of a weighted graph into 
two equal sized sets such that the weight of the edges between the two sets is minimized.  In 
this context, the iterative, greedy, and adaptive elements of the GRASP construction phase may 
be interpreted as follows.  The initial solution is built considering one node at a time.  The 
addition of each node is guided by a greedy function that minimizes the augmented weight of 
the partition.  The node chosen at any iteration in the construction is a function of the 
adjacencies of previously chosen nodes.  There is also a probabilistic component in GRASP, 
that is applied to the selection of elements during the construction phase.  After choosing the 
first node for one set, all non-adjacent nodes are of equal quality with respect to the given 
greedy function.  If one of those nodes is chosen by some deterministic rule, then every GRASP 
iteration will repeat this selection.  In such stages within a construction where there are 
multiple greedy choices, choosing any one of them will not compromise the greedy approach, 
yet each will often lead to a very different solution. 
 
To generalize this strategy, consider forming a candidate list (at each stage of the construction) 
consisting of high quality elements according to an adaptive greedy function.  Then, the next 
element to be included in the initial solution is randomly selected from this list.  A similar 
strategy has been categorized as a cardinality-based semi-greedy heuristic. 
 
The solution generated by a greedy randomized adaptive construction can generally be 
improved by the application of an improvement phase following selected construction phases, 
as by using a descent method based on an exchange mechanism, since usually the result of 
the construction phase is not a local minimum with respect to simple exchange neighborhoods.  
There is an obvious computational tradeoff between the construction and improving phases.  
An intelligent construction requires fewer improving exchanges to reach a local optimum, and 
therefore, it results in a reduction of the total CPU time required per GRASP iteration.  The 
exchange mechanism can also be used as a basis for a hybrid method, as by incorporating 
elements of other methodologies such as simulated annealing or tabu search.  In particular, 
given that the GRASP constructions inject a degree of diversification to the search process, the 
improvement phase may consist of a short term memory tabu search that is fine tuned for 
intensification purposes.  Other connections may be established with methods such as scatter 
search or the path relinking strategy of tabu search, by using the GRASP constructions (or 
their associated local optima) as reference points. 
 
Performing multiple GRASP iterations may be interpreted as a means of strategically sampling 
the solution space.  Based on empirical observations, it has been found that the sampling 
distribution generally has a mean value that is inferior to the one obtained by a deterministic 
construction, but the best over all trials dominates the deterministic solution with a high 
probability.  The intuitive justification of this phenomenon is based on the ordering statistics of 
sampling.  GRASP implementations are generally robust in the sense that it is difficult to find 
or devise pathological instances for which the method will perform arbitrarily bad.  The 
robustness of this method has been well documented in applications to production, flight 
scheduling, equipment and tool selection, location, and maximum independent sets. 
 
An interesting connection exists between GRASP and probabilistic tabu search (PTS).  If PTS is 
implemented in a memoryless form, and restricted to operate only in the constructive phase of 
a multistart procedure (stripping away memory, and even probabilistic choice, from the 
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improving phase), then a procedure resembling GRASP results.  The chief difference is that the 
probabilities used in PTS are rarely chosen to be uniform over members of the candidate list, 
but generally seek to capture variations in the evaluations, whenever these variations reflect 
anticipated differences in the effective quality of the moves considered. 
 
This connection raises the question of whether a multistart variant of probabilistic tabu search 
may offer a useful alternative to memoryless multistart approaches like GRASP.  A study of this 
issue for the quadratic assignment problem, where GRASP has been reported to perform well, 
was conducted by Fleurent and Glover (1996).  To provide a basis for comparison, the 
improving phases of the PTS multistart method excluded the use of TS memory and guidance 
strategies, and were restricted to employ a standard descent procedure.  Probabilistic tabu 
search mechanisms were used in the constructive phases, incorporating frequency-based 
intensification to improve the effectiveness of successive constructions.  The resulting 
multistart method proved significantly superior to other multistart approaches previously 
reported for the quadratic assignment problem.  However, it also turned out to be not as 
effective as the leading tabu search methods that use memory in the improving phases as well 
as (or instead of) in the constructive phases.  Nevertheless, it seems reasonable to conjecture 
that classes of problems exist where increased reliance on re-starting will prove advantageous, 
and where the best results may be obtained from appropriately designed multistart strategies 
such as based on greedy randomized search and multistart variants of PTS. 

5.5  Neural Networks 

Neural networks have a somewhat different set of goals than tabu search, although some 
overlaps exist.  We indicate how tabu search can be used to extend certain neural net 
conceptions, yielding a hybrid that may have both hardware and software implications.  The 
basic transferable insight from tabu search is that memory components with dimensions such 
as recency and frequency can increase the efficacy of a system designed to evolve toward a 
desired state.  We suggest the merit of fusing neural network memory with tabu search 
memory as follows.  (A rudimentary acquaintance with neural network ideas is assumed.) 
 
Recency based considerations can be introduced from tabu search into neural networks by a 
time delay feedback loop from a given neuron back to itself (or from a given synapse back to 
itself, by the device of interposing additional neurons).  This permits firing rules and synapse 
weights to be changed only after a certain time threshold, determined by the length of the 
feedback loop.  Aspiration thresholds of the form conceived in tabu search can be embodied in 
inputs transmitted on a secondary level, giving the ability to override the time delay for altering 
firing thresholds and synaptic weights.  Frequency based effects employed in tabu search 
similarly may be incorporated by introducing a form of cumulative averaged feedback. 
 
Time delay feedback mechanisms for creating recency and frequency effects also can have 
other functions.  In a problem solving context, for example, it may be convenient to disregard 
one set of options to concentrate on another, while retaining the ability to recover the 
suppressed options after an interval.  This familiar type of human activity is not a customary 
part of neural network design, but can be introduced by the time dependent functions 
previously indicated.  In addition, a threshold can be created to allow a suppressed option to 
“go unnoticed” if current activity levels fall in a certain range, effectively altering the interval 
before the option reemerges for consideration.  Neural network designs to incorporate those 
features may directly make use of the TS ideas that have made these elements effective in the 
problem solving domain. 
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Tabu search strategies that introduce longer term intensification and diversification concerns 
are also relevant to neural network processes.  As a foundation for blending these approaches, 
it is useful to adopt an orientation where a collection of neurons linked by synapses with 
various activation weights is treated as a set of attribute variables which can be assigned 
alternative values.  Then the condition that synapse j (from a specified origin neuron to a 
specified destination neuron) is assigned an activation weight in interval p can be coded by the 
assignment yj = p, where yj is a component of an attribute vector y as identified in the 
discussion of attribute creation processes in connection with vocabulary building.  A similar 
coding identifies the condition under which a neuron fires (or does not fire) to activate its 
associated synapses.  As a neural network process evolves, a sequence of these attribute 
vectors is produced over time.  The association between successive vectors may be imagined to 
operate by reference to a neighborhood structure implicit in the neural architecture and 
associated connection weights.  There also may be an implicit association with some (unknown) 
optimization problem, or a more explicit association with a known problem and set of 
constraints.  In the latter case, attribute assignments (neuron firings and synapse activation) 
can be evaluated for efficacy by transformation into a vector x, to be checked for feasibility by x 
∈ X.  (We maintain a distinction between y and x since there may not be a one-one association 
between them.) 
 
Time records identifying the quality of outcomes produced by recent firings, and identifying the 
frequency particular attribute assignments produce the highest quality firing outcomes, yield a 
basis for delaying changes in certain weight assignments and for encouraging changes in 
others. The concept of influence, in the form introduced in tabu search, should be considered 
in parallel with quality of outcomes. 
 
Early designs to incorporate tabu search into neural networks are provided in the work of de 
Werra and Hertz (1989) and Beyer and Ogier (1991). These applications, which respectively 
treat visual pattern identification and nonconvex optimization, are reported to significantly 
reduce training times and increase the reliability of outcomes generated.  More recent uses of 
tabu search to enhance the function of neural networks are provided by the studies reported in 
Glover and Laguna (1997). 

5.6  Target Analysis 

Target analysis (Glover and Greenberg, 1989) links artificial intelligence and operation research 
perspectives to give heuristic or exact solution procedures the ability to learn what rules are 
best to solve a particular class of problems.  Many existing solution methods have evolved by 
adopting, a priori, a somewhat limited characterization of appropriate rules for evaluating 
decisions.  An illustration is provided by restricting the definition of a “best” move to be one 
that produces the most attractive objective function change.  However, this strategy does not 
guarantee that the selected move will lead the search in the direction of the optimal solution.  
In fact, in some settings it has been shown that the merit of such a decision rule diminishes as 
the number of iterations increases during a solution attempt. 
 
As seen earlier, the tabu search philosophy is to select a best admissible move (from a 
strategically controlled candidate list) at each iteration, interpreting best in a broad sense that 
goes beyond the use of objective function measures, and relies upon historical parameters to 
aid in composing an appropriate evaluation.  Target analysis provides a means to exploit this 
broader view.  For example, target analysis can be used to create a dynamic evaluation 
function that incorporates a systematic process for diversifying the search over the longer term. 
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A few examples of the types of questions that target analysis can be used to answer are: 
 

(1) Which decision rule from a collection of proposed alternatives should be selected 
to guide the search?  (In an expanded setting, how should the rules from the 
collection be combined?  By interpreting “decision rule” broadly, this 
encompasses the issue of selecting a neighborhood, or a combination of 
neighborhoods, as the source of a move at a given stage.)  Similarly, which 
parameter values should be chosen to provide effective instances of the decision 
rules? 

 
(2) What attributes are most relevant for determining tabu status, and what 

associated tabu restrictions, tabu tenures and aspiration criteria should be 
used?  

 
(3) What weights should be assigned to create penalties or inducements (e.g., as a 

function of frequency-based memory), and what thresholds should govern their 
application?  

 
(4) Which measures of quality and influence are most appropriate, and which 

combinations of these lead to the best results in different search phases?  
 

(5) What features of the search trajectory disclose when to focus more strongly on 
intensification and when to focus more strongly on diversification?  (In general, 
what is the best relative emphasis between intensification and diversification, 
and under what conditions should this emphasis change?)  

 
Motivation for using target analysis to answer such questions is provided by contrasting target 
analysis with the way answers are normally determined.  Typically, an experimenter begins 
with a set of alternative rules and decision criteria which are intended to capture the principal 
elements of a given method, often accompanied by ranges of associated parameters for 
implementing the rules.  Then various combinations of options are tried, to see how each one 
works for a preliminary set of test problems.  However, even a modest number of rules and 
parameters may create a large number of possibilities in combination, and there is usually 
little hope of testing these with any degree of thoroughness.  As a result, such testing for 
preferred alternatives generally amounts to a process of blind groping.  Where methods boast 
the lack of optional parameters and rules, typically it is because the experimenter has already 
done the advance work to settle upon a particular combination that has been hard-wired for 
the user, at best with some degree of adaptiveness built in, but the process that led to this 
hard-wiring still raises the prospect that another set of options may be preferable. 
 
More importantly, in an adaptive memory approach, where information from the history of the 
search is included among the inputs that determine current choices, a trial and error testing of 
parameters may overlook key elements of timing and yield no insights about relationships to be 
exploited.  Such a process affords no way to uncover or characterize the circumstances 
encountered during the search that may cause a given rule to perform well or badly, and 
consequently gives no way to anticipate the nature of rules that may perform better than those 
originally envisioned.  Target analysis replaces this by a systematic approach to create 
hindsight before the fact, and then undertakes to “reverse engineer” the types of rules that will 
lead to good solutions. 
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5.6.1.  Target Analysis Features 

The main features of target analysis may briefly be sketched by viewing the approach as a five 
phase procedure (see Figure 5.7).  Phase 1 of target analysis is devoted to applying existing 
methods to determine optimal or exceptionally high quality solutions to representative 
problems of a given class.  In order to allow subsequent analysis to be carried out more 
conveniently, the problems are often selected to be relatively small, provided this can be done 
in a way to assure these problems will exhibit features expected to be encountered in hard 
problems from the class examined. 
 

 
Although this phase is straightforward, the effort allotted to obtaining solutions of the specified 
quality will generally be somewhat greater than would be allotted during the normal operation 
of the existing solution procedures, in order to assure that the solutions have the quality 
sought.  (Such an effort may be circumvented in cases where optimal solutions to a particular 
testbed of problems are known in advance.) 
 
Phase 2 uses the solutions produced by Phase 1 as targets, which become the focus of a new 
set of solution passes.  During these passes, each problem is solved again, this time scoring all 
available moves (or a high-ranking subset) on the basis of their ability to progress effectively 
toward the target solution.  The scoring can be a simple classification, such as “good” or “bad,” 
or it may capture more refined gradations.  In the case where multiple best or near best 
solutions may reasonably qualify as targets, the scores may be based on the target that is 
"closest to" the current solution. 
 
In some implementations, choices during Phase 2 are biased to select moves that have high 
scores, thereby leading to a target solution more quickly than the customary choice rules.  In 

Fig. 957  Overview of the target analysis methodology. 
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other implementations, the method is simply allowed to make its regular moves.  In either case, 
the goal is to generate information during this solution effort which may be useful in inferring 
the solution scores.  That is, the scores provide a basis for creating modified evaluations — and 
more generally, for creating new rules to generate such evaluations in order to more closely 
match them with the measures that represent “true goodness” (for reaching the targets). 
 
In the case of tabu search intensification strategies such as elite solution recovery approaches, 
scores can be assigned to parameterized rules for determining the types of solutions to be 
saved.  For example, such rules may take account of characteristics of clustering and 
dispersion among elite solutions.  In environments where data bases can be maintained of 
solutions to related problems previously encountered, the scores may be assigned to rules for 
recovering and exploiting particular instances of these past solutions, and for determining 
which new solutions will be added to the data bases as additional problems are solved.  (The 
latter step, which is part of the target analysis and not part of the solution effort can be 
performed “off line.”) An integration of target analysis with a generalized form of sensitivity 
analysis for these types of applications has been developed and implemented in financial 
planning and industrial engineering by Glover, et al. (1998).  Such designs are also relevant, for 
example, in applications of linear and nonlinear optimization based on simplex method 
subroutines, to identify sets of variables to provide crash-basis starting solution.   
 
In path relinking strategies, scores can be applied to rules for matching initiating solutions 
with guiding solutions.  As with other types of decision rules produced by target analysis, these 
will preferably include reference to parameters that distinguish different problem instances.  
The parameter-based rules similarly can be used to select initiating and guiding solutions from 
pre-existing solutions pools.  Tunneling applications of path relinking, which allow traversal of 
infeasible regions, and strategic oscillation designs that purposely drive the search into and out 
of such regions, are natural accompaniments for handling recovered solutions that may be 
infeasible. 
 
Phase 3 constructs parameterized functions of the information generated in Phase 2, with the 
goal of finding values of the parameters to create a master decision rule.  This rule is designed 
to choose moves that score highly, in order to achieve the goal that underlies Phase 2.  It 
should be noted that the parameters available for constructing a master decision rule depend 
on the search method employed.  Thus, for example, tabu search may include parameters that 
embody various elements of recency-based and frequency-based memory, together with 
measures of influence linked to different classes of attributes or to different regions from which 
elite solutions have been derived. 
 
Phase 4 transforms the general design of the master decision rule into a specific design by 
applying a model to determine effective values for its parameters.  This model can be a simple 
set of relationships based on intuition, or can be a more rigorous formulation based on 
mathematics or statistics (such as a goal programming or discriminant analysis model, or even 
a “connectionist” model based on neural networks). 
 
The components of phases 2, 3 and 4 are not entirely distinct, and may be iterative.  On the 
basis of the outcomes of these phases, the master decision rule becomes the rule that drives 
the solution method.  In the case of tabu search, this rule may use feedback of outcomes 
obtained during the solution process to modify its parameters for the problem being solved. 
 
Phase 5 concludes the process by applying the master decision rule to the original 
representative problems and to other problems from the chosen solution class to confirm its 
merit.  The process can be repeated and nested to achieve further refinement. 
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Target analysis has an additional important function.  On the basis of the information 
generated during its application, and particularly during its final confirmation phase, the 
method produces empirical frequency measures for the probabilities that choices with high 
evaluations will lead to an optimal (or near-optimal) solution within a certain number of steps.  
These decisions are not only at tactical levels but also at strategic levels, such as when to 
initiate alternative solution phases, and which sources of information to use for guiding these 
phases (e.g., whether from processes for tracking solution trajectories or for recovering and 
analyzing solutions).  By this means, target analysis can provide inferences concerning 
expected solution behavior, as a supplement to classical “worst case” complexity analysis.  
These inferences can aid the practitioner by indicating how long to run a solution method to 
achieve a solution desired quality, according to specified empirical probability. 
 
One of the useful features of target analysis is its capacity for taking advantage of human 
interaction.  The determination of key parameters, and the rules for connecting them, can draw 
directly on the insight of the observer as well as on supplementary analytical techniques.  The 
ability to derive inferences from pre-established knowledge of optimal or near optimal 
solutions, instead of manipulating parameters blindly (without information about the relation 
of decisions to targeted outcomes), can save significant investment in time and energy.  The 
key, of course, is to coordinate the phases of solution and guided re-solution to obtain 
knowledge that has the greatest utility.  Many potential applications of target analysis exist, 
and recent applications suggest the approach holds considerable promise for developing 
improved decision rules for difficult optimization problems. 
 
5.6.2 Illustrative Application and Implications 

An application of target analysis to a production scheduling problem (Laguna and Glover, 
1993) provides a basis for illustrating some of the relevant considerations of the approach.  In 
this study, the moves consisted of a combination of swap and insert moves, and scores were 
generated to identify the degree to which a move brought a solution closer to the target solution 
(which consisted of the best known solution before improving the method by means of target 
analysis).  In the case of a swap move, for example, a move might improve, worsen (or, by the 
measure used, leave unchanged) the “positional value” of each component of the swap, and by 
the simplification of assigning scores of 1, 0 or -1 to each component, a move could accordingly 
receive a score ranging from 2 to -2.  The application of target analysis then proceeded by 
tracking the scores of the 10 highest evaluation moves at each iteration, to determine the 
circumstances under which the highest evaluations tended to correspond to the highest scores.  
Both tabu and non-tabu moves were included in the analysis, to see whether tabu status was 
also appropriately defined. 
 
At an early stage of the analysis a surprising relationship emerged.  Although the scores of the 
highest evaluation non-tabu moves ranged across both positive and negative values, the 
positive values were largely associated with moves that improved the schedule while the 
negative values were largely associated with moves that worsened the schedule.  In short, the 
highest evaluations were significantly more “accurate” (corresponded more closely to high 
scores) during phases where the objective function value of the schedule improved than during 
phases when it deteriorated. 
 
A simple diversification strategy was devised to exploit this discovery.  Instead of relying on the 
original evaluations during “disimproving phases,” the strategy supplemented the evaluations 
over these intervals by assigning penalties to moves whose component jobs had been moved 
frequently in the past.  The approach was initiated at a local optimum after the progress of the 
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search began to slow (as measured by how often a new best solution was found), and was de-
activated as soon as a move was executed that also was an improving move (to become re-
activated the next time that all available moves were disimproving moves).  The outcome was 
highly effective, producing new solutions that were often superior to the best previously found, 
especially for larger problems, and also finding the highest quality solutions more quickly. 
 
The success of this application, in view of its clearly limited scope, provides an incentive for 
more thorough applications.  For example, a more complete analysis would reasonably proceed 
by first seeking to isolate the high scoring moves during the disimproving phases and to 
determine how frequency-based memory and other factors could be used to identify these 
moves more effectively.  Comparisons between evaluations proposed in this manner and their 
associated move scores would then offer a foundation for identifying more intelligent choices.  
Classifications to segregate the moves based on criteria other than “improving” and 
“disimproving” could also be investigated.  Additional relevant factors that may profitably be 
taken into account are examined in the illustration of the next subsection. 
 
A Hypothetical Illustration.  The following hypothetical example embodies a pattern related to 
the one uncovered in the scheduling application cited above.  However, the pattern in this case 
is slightly more ambiguous, and less clearly points to options that it may be exploited. 
 
For simplicity in this illustration, suppose that moves are scored to be either “good” or “bad.”  
(If each move changes the value of a single 0-1 variable, for instance, a move may be judged 
good or bad depending on whether the assigned value is the same as in the target solution.  
More generally, a threshold can be used to differentiate the two classifications.) 
 
Table 5.1 indicates the percent of time each of the five highest evaluation moves, restricting 
attention in this case to those that are non-tabu, receives a good score during the search 
history.  (At a first stage of conducting the target analysis, this history could be for a single 
hard problem, or for a small collection of such problems.)  The Move Rank in the table ranges 
from 1 to 5, corresponding to the highest evaluation move, the 2nd highest evaluation move, 
and so on to the 5th highest evaluation move.  
 
The indicated percent values do not total 100 because good scores may also be assigned to 
moves with lower evaluations, whose ranks are not included among those shown.  Also, it may 
be expected that some non-tabu moves will also receive good scores.  (A fuller analysis would 
similarly show ranks and scores for these moves.) 
 

Table 5.1  Moves throughout the search history. 
Move Rank 1 2 3 4 5 
Percent of moves 
with “good” scores 

22 14 10 20 16 

 
At first glance, the table appears to suggest that the fourth and fifth ranked moves are almost 
as good as the first ranked move, although the percent of moves that receive good scores is not 
particularly impressive for any of the ranks.  Without further information, a strategy might be 
contemplated that allocates choices probabilistically among the first, fourth and fifth ranked 
moves (though such an approach would not be assured to do better than choosing the first 
ranked move at each step).  Tables 5.2 and 5.3 below provide more useful information about 
choices that are potentially favorable, by dividing the iterations into improving and 
disimproving phases as in the scheduling study previously discussed. 
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Table 5.2  Moves during improving phases. 
Move Rank 1 2 3 4 5 
Percent of moves 
with “good” scores 

34 21 9 14 7 

 
Table 5.3  Moves during disimproving phases. 
Move Rank 1 2 3 4 5 
Percent of moves 
with “good” scores 

8 7 11 26 25 

 
These tables are based on a hypothetical situation where improving and disimproving moves 
are roughly equal in number, so that the percent values shown in Table 9.1 are the average of 
the corresponding values in Tables 9.2 and 9.3.  (For definiteness, moves that do not change 
the problem objective function may be assumed to be included in the improving phase, though 
a better analysis might treat them separately.) 
 
The foregoing outcomes to an extent resemble those found in the scheduling study, though 
with a lower success rate for the highest evaluation improving moves.  Clearly Tables 5.2 and 
5.3 give information that is more exploitable than the information in Table 5.1.  According to 
these latter tables, it would be preferable to focus more strongly on choosing one of the two 
highest evaluation moves during an improving phase, and one of the fourth or fifth highest 
evaluation moves during a disimproving phase.  This conclusion is still weak in several 
respects, however, and we examine considerations that may lead to doing better. 
 
Refining the Analysis.  The approach of assigning scores to moves, as illustrated in Tables 
5.1, 5.2 and 5.3, disregards the fact that some solution attributes (such as assignments of 
values to particular 0-1 variables) may be fairly easy to choose “correctly,” while others may be 
somewhat harder.  Separate tables of the type illustrated should therefore be created for easy 
and hard attributes (as determined by how readily their evaluations lead to choices that would 
generate the target solution), since the preferred rules for evaluating moves may well differ 
depending on the types of attributes the moves contain.  Likewise, an effective strategy may 
require that easy and hard attributes become the focus of different search phases.  The 
question therefore arises as to how to identify such attributes. 
 
As a first approximation, we may consider an easy attribute to be one that often generates an 
evaluation that keeps it out of the solution if it belongs out, or that brings it into the solution if 
it belongs in.  A hard attribute behaves oppositely.  Thus, a comparison between frequency-
based memory and move scores gives a straightforward way to differentiate these types of 
attributes.  Both residence and transition frequencies are relevant, though residence measures 
are probably more usually appropriate.  For example, an attribute that belongs to the current 
solution a high percentage of the time, and that also belongs to the target solution, would 
evidently qualify as easy.  On the other hand, the number of times the attribute is accepted or 
rejected from the current solution may sometimes be less meaningful than how long it stays in 
or out.  The fact that residence and transition frequencies are characteristically used in tabu 
search makes them conveniently available to assist in differentiations that can improve the 
effectiveness of target analysis. 
 
5.6.3  Conditional Dependencies Among Attributes 

Tables 5.1, 5.2 and 5.3 suggest that the search process that produced them is relatively 
unlikely to find the target solution.  Even during improving phases, the highest evaluation 
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move is almost twice as likely to be bad as good.  However, this analysis is limited, and 
discloses a limitation of the tables themselves.  In spite of first appearances, it is entirely 
possible that these tables could be produced by a search process that successfully obtains the 
target solution (by a rule that chooses a highest evaluation move at each step).  The reason is 
that the relation between scores and evaluations may change over time.  While there may be 
fairly long intervals where choices are made poorly, there may be other shorter intervals where 
the choices are made more effectively – until eventually one of these shorter intervals succeeds 
in bringing all of the proper attributes into the solution. 
 
Such behavior is likely to occur in situations where correctly choosing some attributes may 
pave the way for correctly choosing others.  The interdependence of easy and hard attributes 
previously discussed is carried a step farther by these conditional relationships, because an 
attribute that at one point deserves to be classified hard may later deserve to be classified easy, 
once the appropriate foundations are laid. 
 
Instead of simply generating tables that summarize results over long periods of the search 
history, therefore, it can be important to look for blocks of iterations where the success rate of 
choosing good moves may differ appreciably from the success rate overall.  These blocks 
provide clues about intermediate solution compositions that may transform hard attributes 
into easy ones, and thus about preferred sequences for introducing attributes that may exploit 
conditional dependencies.  The natural step then is to see which additional types of evaluation 
information may independently lead to identifying such sequences. 
 
A simple instance of this type of effect occurs where the likelihood that a given attribute will 
correctly be selected (to enter or leave the solution) depends roughly on the number of 
attributes that already correctly belong to the solution. In such situations, the appropriate way 
to determine a “best choice” is therefore also likely to depend on this number of attributes 
correctly in solution.  Even though such information will not generally be known during the 
search, it may be possible to estimate it and adjust the move evaluations accordingly.  Such 
relationships, as well as the more general ones previously indicated, are therefore worth 
ferreting out by target analysis. 
 
5.6.4  Differentiating Among Targets 

In describing the steps of target analysis, it has already been noted that scores should not 
always be rigidly determined by only one specific target, but may account for alternative 
targets, and in general may be determined by the target that is closest to the current solution 
(by a metric that depends on the context).  Acknowledging that there may be more than one 
good solution that is worth finding, such a differentiation among targets can prove useful.  Yet 
even in the case where a particular solution is uniquely the one to be sought (as where its 
quality may be significantly better than that of all others known), alternative targets may be 
still be valuable to consider in the role of intermediate solutions, and may provide a 
springboard to finding additional solutions that are better.  Making reference to intermediate 
targets is another way of accounting for the fact that conditional dependencies may exist 
among the attributes, as previously discussed.  However, such dependencies in some cases 
may be more easily exploited by explicitly seeking constructions at particular stages that may 
progressively lead to a final destination. 
 
Some elite solutions may provide better targets than others because they are easier to obtain — 
completely apart from developing strategies to reach ultimate targets by means of intermediate 
ones.  However, some care is needed in making the decision to focus on such easier targets as 
a basis for developing choice rules.  As in the study of Lokketangen and Glover (1997), it may 
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be that focusing instead on the harder targets will yield rules that likewise cause the easier 
targets to be found more readily, and these rules may apply to a wider spectrum of problems 
than those derived by focusing on easier targets. 
 
5.6.5  Generating Rules by Optimization Models 

Target analysis can use optimization models to generate decision rules by finding weights for 
various decision criteria to create a composite (master) rule.  To illustrate, let G and B 
respectively denote index sets for good moves and bad moves, as determined from move scores, 
as in the classification embodied in Tables 5.1, 5.2, and 5.3.  Incorporate the values of the 
different decision criteria in a vector Ai for i G∈  and i ∈ B; i.e., the jth component aij of Ai is the 
value assigned to move i by the decision criterion j.  These components need not be the result 
of rules, but can simply correspond to data considered relevant to constructing rules.  In the 
tabu search setting, such data can include elements of recency-based and frequency-based 
memory.  Then we may consider a master rule which is created by applying a weight vector w 
to each vector Ai to produce a composite decision value ∑=

j
jiji wawA .  An ambitious objective 

is to find a vector w that yields 
 

Aiw > 0 for i ∈ G 
Aiw ≤ 0  for i ∈ B 

 
If such a weight vector w could be found, then all good moves would have higher evaluations 
by the composite criterion than all bad moves, which of course is normally too much to ask.  A 
step toward formulating a more reasonable goal is as follows.  Let G(iter) and B(iter) identify the 
sets G and B for a given iteration iter.  Then an alternative objective is to find a w so that, at 
each such iteration, at least one i G iter∈ ( )  would yield 
 

Aiw > Akw for all k ∈ B(iter) 
 
or equivalently 
 

Max{Aiw: i ∈ G(iter)} > Max{Akw: k ∈ B(iter)} 
 
This outcome would insure that a highest evaluation move by the composite criterion will 
always be a good move.  Naturally, this latter goal is still too optimistic.  Nevertheless, it is 
possible to devise goal programming models (related to LP discriminant analysis models) that 
can be used to approximate this goal.  A model of this type has proved to be effective for 
devising branching rules to solve a problem of refueling nuclear reactors (Glover, Klingman and 
Phillips, 1990). 
 
A variety of opportunities exist for going farther in such strategies.  For example, issues of 
creating nonlinear and discontinuous functions to achieve better master rules can be 
addressed by using trial functions to transform components of Ai vectors into new components, 
guided by LP sensitivity and postoptimality analysis.  Target analysis ideas previously indicated 
can also be useful in this quest. 
 
The range of possibilities for taking advantage of target analysis is considerable, and for the 
most part only the most rudimentary applications of this learning approach have been 
initiated.  The successes of these applications make further exploration of this approach 
attractive. 
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6.  Neglected Tabu Search Strategies 

We briefly review several key strategies in tabu search that are often neglected (especially in 
beginning studies), but which are important for producing the best results. 
 
Our purpose is to call attention to the relevance of particular elements that are mutually 
reinforcing, but which are not always discussed “side by side” in the literature, and which 
deserve special emphasis.  In addition, observations about useful directions for future research 
are included. 
 
A comment regarding implementation:  first steps do not have to include the most 
sophisticated variants of the ideas discussed in the following sections, but the difference 
between “some inclusion” and “no inclusion” can be significant.  Implementations that 
incorporate simple instances of these ideas will often disclose the manner in which refined 
implementations can lead to improved performance. 
 
The material that follows brings together ideas described in preceding sections to provide a 
perspective on how they interrelate.  In the process, a number of additional observations are 
introduced. 

6.1 Candidate List Strategies 

Efficiency and quality can be greatly affected by using intelligent procedures for isolating 
effective candidate moves, rather than trying to evaluate every possible move in a current 
neighborhood of alternatives.  This is particularly true when such a neighborhood is large or 
expensive to examine.  The gains to be achieved by using candidate lists have been widely 
documented, yet many TS studies overlook their relevance. 
 
Careful organization in applying candidate lists, as by saving evaluations from previous 
iterations and updating them efficiently, can also be valuable for reducing overall effort.  Time 
saved in these ways allows a chance to devote more time to higher level features of the search. 
 
While the basic theme of candidate lists is straightforward, there are some subtleties in the 
ways candidate list strategies may be used.  Considerable benefit can result by being aware of 
fundamental candidate list approaches, such as the Subdivision Strategy, the Aspiration Plus 
Strategy, the Elite Candidate List Strategy, the Bounded Change Strategy and the Sequential 
Fan Strategy (as discussed in Section 3). 
 
An effective integration of a candidate list strategy with the rest of a tabu search method will 
typically benefit by using TS memory designs to facilitate functions to be performed by the 
candidate lists.  This applies especially to the use of frequency based memory.  A major 
mistake of some TS implementations, whether or not they make use of candidate lists, is to 
consider only the use of recency based memory.  Frequency based memory — which itself takes 
different forms in intensification phases and diversification phases — cannot only have a 
dramatic impact on the performance of the search in general but also can often yield gains in 
the design of candidate list procedures.  A useful way to meld different candidate list 
procedures is described in Glover (1997). 
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6.2  Intensification Approaches 

Intensification strategies, which are based on recording and exploiting elite solutions or, 
characteristically, specific features of these solutions, have proved very useful in a variety of 
applications.  Some of the relevant forms of such strategies and considerations for 
implementing them are as follows. 
 
6.2.1  Restarting with Elite Solutions 

The simplest intensification approach is the strategy of recovering elite solutions in some order, 
each time the search progress slows, and then using these solutions as a basis for re-initiating 
the search.  The list of solutions that are candidates to be recovered is generally limited in size, 
often in the range of 20 to 40 (although in parallel processing applications the number is 
characteristically somewhat larger).  The size chosen for the list in serial TS applications also 
corresponds roughly to the number of solution recoveries anticipated to be done during the 
search, and so may be less or more depending on the setting.  When an elite solution is 
recovered from the list, it is removed, and new elite solutions are allowed to replace less 
attractive previous solutions — usually dropping the worst of the current list members. 
However, if a new elite solution is highly similar to a solution presently recorded, instead of 
replacing the current worst solution, the new solution will compete directly with its similar 
counterpart to determine which solution is saved. 
 
This approach has been applied very effectively in job shop and flow shop scheduling, in vehicle 
routing, and in telecommunication design problems.  One of the best approaches for 
scheduling applications keeps the old TS memory associated with the solution, but makes sure 
the first new move away from this solution goes to a different neighbor than the one visited 
after encountering this solution the first time.  Another effective variant does not bother to save 
the old TS memory, but uses a probabilistic TS choice design. 
 
The most common strategy is to go through the list from best to worst, but in some cases it has 
worked even better to go through the list in the other direction.  In this approach, it appears 
effective to allow two passes of the list.  On the first pass, when a new elite solution is found 
that falls below the quality of the solution currently recovered, but which is still better than the 
worst already examined on the list, the method still adds the new solution to the list and 
displaces the worst solution.  Then a second pass, after reaching the top of the list, recovers 
any added solutions not previously recovered. 
 
6.2.2  Frequency of Elite Solutions 

Another primary intensification strategy is to examine elite solutions to determine the 
frequency in which particular solution attributes occur (where the frequency is typically 
weighted by the quality of the solutions in which the attributes are found). 
 
This strategy was originally formulated in the context of identifying “consistent” and “strongly 
determined” variables — where, loosely speaking, consistent variables are those more 
frequently found in elite solutions, while strongly determined variables are those that would 
cause the greatest disruption by changing their values (as sometimes approximately measured 
by weighting the frequencies based on solution quality).  The idea is to isolate the variables that 
qualify as more consistent and strongly determined (according to varying thresholds), and then 
to generate new solutions that give these variables their “preferred values.”  This can be done 
either by rebuilding new solutions in a multistart approach or by modifying the choice rules of 
an ongoing solution effort to favor the inclusion of these value assignments. 
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Keeping track of the frequency that elite solutions include particular attributes (such as edges 
of tours, assignments of elements to positions, narrow ranges of values taken on by variables, 
etc.) and then favoring the inclusion of the highest frequency elements, effectively allows the 
search to concentrate on finding the best supporting uses and values of other elements.  A 
simple variant is to “lock in” a small subset of the most attractive attributes (value 
assignments) — allowing this subset to change over time or on different passes. 
 
A Relevant Concern:  In the approach that starts from a current (good) solution, and tries to 
bring in favored elements, it is important to introduce an element that yields a best outcome 
from among the current contenders (where, as always, best is defined to encompass 
considerations that are not solely restricted to objective function changes).  If an attractive 
alternative move shows up during this process, which does not involve bringing in one of these 
elements, aspiration criteria may determine whether such a move should be taken instead.  
Under circumstances where the outcome of such a move appears sufficiently promising, the 
approach may be discontinued and allowed to enter an improving phase (reflecting a decision 
that enough intensification has been applied, and it is time to return to searching by 
customary means). 
 
Intensification of this form makes it possible to determine what percent of “good attributes” 
from prior solutions should be included in the solution currently generated.  It also gives 
information about which subsets of these attributes should go together, since it is preferable 
not to choose attributes during this process that cause the solution to deteriorate compared to 
other choices.  This type of intensification strategy has proved highly effective in the settings of 
vehicle routing and zero-one mixed integer optimization. 
 
6.2.3  Memory and Intensification 

It is clearly somewhat more dangerous to hold elements “in” solution than to hold them “out” 
(considering that a solution normally is composed of a small fraction of available elements — as 
where a tree contains only a fraction of the edges of a graph).  However, there is an important 
exception, previously intimated.  As part of a longer term intensification strategy, elements may 
be selected very judiciously to be “locked in” on the basis of having occurred with high 
frequency in the best solutions found.  In that case, choosing different mutually compatible 
(and mutually reinforcing) sets to lock in can be quite helpful.  This creates a combinatorial 
implosion effect (opposite to a combinatorial explosion effect) that shrinks the solution space to 
a point where best solutions over the reduced space are likely to be found more readily. 
 
The key to this type of intensification strategy naturally is to select an appropriate set of 
elements to lock in, but the chances appear empirically to be quite high that some subset of 
those with high frequencies in earlier best solutions will be correct. Varying the subsets 
selected gives a significant likelihood of picking a good one.  (More than one subset can be 
correct, because different subsets can still be part of the same complete set.)  Aspiration 
criteria make it possible to drop elements that are supposedly locked in, to give this approach 
more flexibility. 
 
6.2.4  Relevance of Clustering for Intensification 

A search process over a complex space is likely to produce clusters of elite solutions, where one 
group of solutions gives high frequencies for one set of attributes and another group gives high 
frequencies for a different set.  It is important to recognize this situation when it arises. 
Otherwise there is a danger that an intensification strategy may try to compel a solution to 
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include attributes that work against each other.  This is particularly true in a strategy that 
seeks to generate a solution by incorporating a collection of attributes “all at once,” rather than 
using a step by step evaluation process that is reapplied at each move through a neighborhood 
space.  (Stepping through a neighborhood has the disadvantage of being slower, but may 
compensate by being more selective. Experimentation to determine the circumstances under 
which each of these alternative intensification approaches may be preferable would be quite 
valuable.) 
 
A strategy that incorporates a block of attributes together may yield benefits by varying both 
the size and composition of the subsets of high frequency “attractive” attributes, even if these 
attributes are derived from solutions that lie in a common cluster, since the truly best 
solutions may not include them all.  Threshold based forms of logical restructuring, as 
discussed in Section 3, may additionally lead to identifying elements to integrate into solutions 
that may not necessarily belong to solutions previously encountered.  The vocabulary building 
theme becomes important in this connection.  The relevance of clustering analysis for logical 
restructuring and vocabulary building is reinforced by the use of a related conditional analysis, 
which is examined subsequently in Section 6.5. 

6.3  Diversification Approaches 

Diversification processes in tabu search are sometimes applied in ways that limit their 
effectiveness, due to overlooking the fact that diversification is not just “random” or 
“impulsive,” but depends on a purposeful blend of memory and strategy.  As noted in Section 
3, recency and frequency based memory are both relevant for diversification.  Historically, 
these ideas stem in part from proposals for exploiting surrogate constraint methods.  In this 
setting, the impetus is not simply to achieve diversification, but to derive appropriate weights 
in order to assure that evaluations will lead to solutions that satisfy required conditions (see 
Section 5).  Accordingly, it is important to account for elements such as how often, to what 
extent, and how recently, particular constraints have been violated, in order to determine 
weights that produce more effective valuations. 
 
The implicit learning effects that underlie such uses of recency, frequency and influence are 
analogous to those that motivate the procedures used for diversification (and intensification) in 
tabu search.  Early strategic oscillation approaches exploited this principle by driving the 
search to various depths outside (and inside) feasibility boundaries, and then employing 
evaluations and directional search to move toward preferred regions. 
 
In the same way that these early strategies bring diversification and intensification together as 
part of a continuously modulated process, it is important to stress that these two elements 
should be interwoven in general.  A common mistake in many TS implementations is to apply 
diversification without regard for intensification.  “Pure” diversification strategies are 
appropriate for truly long term strategies, but over the intermediate term, diversification is 
generally more effective if it is applied by heeding information that is also incorporated in 
intensification strategies.  In fact, intensification by itself can sometimes cause a form of 
diversification, because intensifying over part of the space allows a broader search of the rest of 
the space.  A few relevant concerns are as follows. 
 
6.3.1 Diversification and Intensification Links 

A simple and natural diversification approach is to keep track of the frequency that attributes 
occur in non-elite solutions, as opposed to solutions encountered in general, and then to 
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periodically discourage the incorporation of attributes that have modest to high frequencies 
(giving greater penalties to larger frequencies).  The reference to non-elite solutions tends to 
avoid penalizing attributes that would be encouraged by an intensification strategy. 
 
More generally, for a “first level” balance, an Intermediate Term Memory matrix may be used, 
where the high frequency items in elite solutions are not penalized by the long term values, but 
may even be encouraged.  The tradeoffs involved in establishing the degree of encouragement, 
or the degree of reducing the penalties, represents an area where a small amount of 
preliminary testing can be valuable.  This applies as well to picking thresholds to identify high 
frequency items.  (Simple guesses about appropriate parameter values can often yield benefits, 
and tests of such initial guesses can build an understanding that leads to increasingly effective 
strategies.) 
 
By extension, if an element has never or rarely been in a solution generated, then it should be 
given a higher evaluation for being incorporated in a diversification approach if it was “almost 
chosen” in the past but didn't make the grade.  This observation has not been widely heeded, 
but is not difficult to implement, and is relevant to intensification strategies as well.  The 
relevant concerns are illustrated in the discussion of “Persistent Attractiveness” and “Persistent 
Voting” in Chapter 7 of Glover and Laguna (1997). 
 
6.3.2 Implicit Conflict and the Importance of Interactions 

Current evaluations also should not be disregarded while diversification influences are 
activated.  Otherwise, a diversification process may bring elements together that conflict with 
each other, make it harder rather than easier to find improved solutions. 
 
For example, a design that gives high penalties to a wide range of elements, without 
considering interactions, may drive the solution to avoid good combinations of elements.  
Consequently, diversification — especially in intermediate term phases — should be carried out 
for a limited number of steps, accompanied by watching for and sidestepping situations where 
indiscriminately applying penalties would create incompatibilities or severe deterioration of 
quality.  To repeat the theme:  even in diversification, attention to quality is important.  And as 
in “medical remedies,” sometimes small doses are better than large ones.  Larger doses (i.e., 
more radical departures from previous solutions) which are normally applied less frequently, 
can still benefit by coordinating the elements of quality and change. 
 
6.3.3  Reactive Tabu Search 

An approach called Reactive Tabu Search (RTS) developed by Battiti and Tecchiolli (1992, 
1994a) deserves additional consideration as a way to achieve a useful blend of intensification 
and diversification.  RTS incorporates hashing in a highly effective manner to generate 
attributes that are very nearly able to differentiate among distinct solutions.  That is, very few 
solutions contain the same hashed attribute, applying standard hash function techniques.  
Accompanying this, Battiti and Tecchiolli use an automated tabu tenure, which begins with the 
value of 1 (preventing a hashed attribute from being reinstated if this attribute gives the 
“signature” of the solution visited on the immediately preceding step).  This tenure is then 
increased if examination shows the method is possibly cycling, as indicated by periodically 
generating solutions that produce the same hashed attribute. 
 
The tabu tenure, which is the same for all attributes, is increased exponentially when 
repetitions are encountered, and decreased gradually when repetitions disappear.  Under 
circumstances where the search nevertheless encounters an excessive number of repetitions 
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within a given span (i.e., where a moving frequency measure exceeds a certain threshold), a 
diversification step is activated, which consists of making a number of random moves 
proportional to a moving average of the cycle length. 
 
The reported successes of this approach invite further investigations of its underlying ideas 
and related variants.  As a potential bases for generating such variants, attributes created by 
hashing may be viewed as fine grain attributes, which give them the ability to distinguish 
among different solutions.  By contrast, “standard” solution attributes, which are the raw 
material for hashing, may be viewed as coarse grain attributes, since each may be contained in 
(and hence provide a signature for) many different solutions. Experience has shown that tabu 
restrictions based on coarse grain attributes are often advantageous for giving increased vigor 
to the search.  (There can exist a variety of ways of defining and exploiting attributes, 
particularly at coarser levels, which complicates the issue somewhat.)  This raises the question 
of when particular degrees of granularity are more effective than others. 
 
It seems reasonable to suspect that fine grain attributes may yield greater benefits if they are 
activated in the vicinity of elite solutions, thereby allowing the search to scour “high quality 
terrain” more minutely.  This effect may also be achieved by reducing tabu tenures for coarse 
grain attributes — or basing tabu restrictions on attribute conjunctions — and using more 
specialized aspiration criteria.  Closer scouring of critical regions can also be brought about by 
using strongly focused candidate list strategies, such as a sequential fan candidate list 
strategy.  (Empirical comparisons of such alternatives to hashing clearly would be of interest.)  
On the other hand, as documented by Nonobe and Ibaraki (1998, 2001), the use of “extra 
coarse grain” attributes (those that prohibit larger numbers of moves when embodied in tabu 
restrictions) can prove advantageous for solving large problems over a broadly defined problem 
domain. 
 
Another type of alternative to hashing also exists, which is to create new attributes by 
processes that are not so uniform as hashing.  A potential drawback of hashing is its inability 
to distinguish the relative importance (and appropriate influence) of the attributes that it seeks 
to map into others that are fine grained.  A potential way to overcome this drawback is to make 
use of vocabulary building (Glover and Laguna, 1997) and of conditional analysis (Section 6.5).  

6.4  Strategic Oscillation 

A considerable amount has been written on strategic oscillation and its advantages.  However, 
one of the uses of this approach that is frequently overlooked involves the idea of oscillating 
among alternative choice rules and neighborhoods.  As stressed in Section 4, an important 
aspect of strategic oscillation is the fact that there naturally arise different types of moves and 
choice rules that are appropriate for negotiating different regions and different directions of 
search.  Thus, for example, there are many constructive methods in graph and scheduling 
problems, but strategic oscillation further leads to the creation of complementary “destructive 
methods” which can operate together with their constructive counterparts.  Different criteria 
emerge as relevant for selecting a move to take on a constructive step versus one to take on a 
destructive step.  Similarly, different criteria apply according to whether moves are chosen 
within a feasible region or outside a feasible region (and whether the search is moving toward 
or away from a feasibility boundary). 
 
The variation among moves and evaluations introduces an inherent vitality into the search that 
provides one of the sources underlying the success of strategic oscillation approaches.  This 
reinforces the motivation to apply strategic oscillation to the choice of moves and evaluation 
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criteria themselves, selecting moves from a pool of possibilities according to rules for 
transitioning from one choice to another.  In general, instead of picking a single rule, a process 
of invoking multiple rules provides a range of alternatives that run all the way from “strong 
diversification” to “strong intensification.” 
 
This form of oscillation has much greater scope than may at first be apparent, because it 
invokes the possibility of simultaneously integrating decision rules and neighborhoods, rather 
than only visiting them in a strategically determined sequence. 
 
Such concepts are beginning to find counterparts in investigations being launched by the 
computer science community.  The “agent” terminology is being invoked in such applications to 
characterize different choice mechanisms and neighborhoods as representing different agents.  
Relying on this representation, different agents then are assigned to work on (or “attack”) the 
problem serially or in parallel.  The CS community has begun to look upon this as a significant 
innovation — unaware of the literature where such ideas were introduced a decade or more ago 
— and the potential richness and variation of these ideas still seems not to be fully recognized.  
For example, there have not yet been any studies that consider the idea of “strategically 
sequencing” rules and neighborhoods, let alone those that envision the notion of parametric 
integration.  The further incorporation of adaptive memory structures to enhance the 
application of such concepts also lies somewhat outside the purview of most current CS 
proposals.  At the same time, however, TS research has also neglected to conduct empirical 
investigations of the broader possibilities.  This is clearly an area that deserves fuller study. 

6.5  Clustering and Conditional Analysis 

To reinforce the theme of identifying opportunities for future research, we provide an 
illustration to clarify the relevance of clustering and conditional analysis, particularly as a 
basis for intensification and diversification strategies in tabu research. 
 
An Example:  Suppose 40 elite solutions have been saved during the search, and each solution 
is characterized as a vector x of zero-one variables xj, for { }nNj ,,1K=∈ .  Assume the 
variables that receive positive values in at least one of the elite solutions are indexed x1 to x30.  
(Commonly in such circumstances, n may be expected to be somewhat larger than the number 
of positive valued variables, e.g., in this case, reasonable values may be n = 100 or 1000.) 
 
For simplicity, we restrict attention to a simple weighted measure of consistency which is given 
by the frequency that the variables x1 to x30 receive the value 1 in these elite solutions.  (We 
temporarily disregard weightings based on solution quality and other aspects of “strongly 
determined” assignments.)  Specifically, assume the frequency measures are as shown in Table 
6.1. 
 
Since each of x1 to x15 receives a value of 1 in 24 of the 40 solutions, these variables tie for 
giving “most frequent” assignments.  An intensification strategy that favors the inclusion of 
some number of such assignments would give equal bias to introducing each of x1 to x15 at the 
value 1.  (Such a bias would typically be administrated either by creating modified evaluations 
or by incorporating probabilities based on such evaluations.) 
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To illustrate the relevance of clustering, suppose the collection of 40 elite solutions can be 
partitioned into two subsets of 20 solutions each, whose characteristics are summarized in 
Table 6.2. 
 

 
A very different picture now emerges.  The variables x1 to x15 no longer appear to deserve equal 
status as “most favored” variables.  Treating them with equal status may be a useful source of 
diversification, as opposed to intensification, but the clustered data provide more useful 
information for diversification concerns as well.  In short, clustering gives a relevant contextual 
basis for determining the variables (and combinations of variables) that should be given special 
treatment. 
 
6.5.1 Conditional Relationships 

To go a step beyond the level of differentiation provided by cluster analysis, it is useful to 
sharpen the focus by referring explicitly to interactions among variables.  Such interactions 
can often be identified in a very straightforward way, and can form a basis for more effective 
clustering.  In many types of problems, the number of value assignments (or the number of 
“critical attributes”) needed to specify a solution is relatively small compared to the total 
number of problem variables.  (For example, in routing, distribution and telecommunication 
applications, the number of links contained in feasible constructions is typically a small 
fraction of those contained in the underlying graph.)  Using a 0-1 variable representation of 
possibilities, it is not unreasonable in such cases to create a cross reference matrix, which 
identifies variables (or coded attributes) that simultaneously receive a value of 1 in a specific 
collection of elite solutions. 
 
To illustrate, suppose the index set P = {1,...,p} identifies the variables xj that receive a value of 
1 in at least r solutions from the collection of elite solutions under consideration.  (Apart from 
other strategic considerations, the parameter r can also be used to control the size of p, since 
larger values of r result in smaller values of p.) 

Table 6.1  Frequency measures. 

Variables xj = 1 Number of 
Solutions 

x1 to x15 24 
x16 to x20 21 
x21 to x25 17 
x26 to x30 12 

Table 6.2  Frequency measures for two subsets. 

Subset 1 (20 solutions) Subset 2 (20 solutions) 
Variables xj = 1 No. of 

Solutions 
Variables xj = 1 No. of 

Solutions 
x11 to x15 20 x16 to x20 20 
x21 to x25 16 x6 to x10 16 
x1 to x5 12 x1 to x5 12 
x6 to x10 8 x26 to x30 8 
x26 to x30 4 x11 to x15 4 
x16 to x20 1 x21 to x25 1 



88 Glover and Laguna 

 
Then create a p×p symmetric matrix M whose entries mij identify the number of solutions in 
which xi and xj are both 1.  (Thus, row Mi of M represents the sum of the solution vectors in 
which xi = 1, restricted to components xj for j ∈ P.)  The value mii identifies the total number of 
elite solutions in which xi = 1, and the value mij/mii represents the “conditional probability” that 
xj = 1 in this subset of solutions.  Because p can be controlled to be of modest size, as by the 
choice of r and the number of solutions admitted to the elite set, the matrix M is not generally 
highly expensive to create or maintain. 
 
By means of the conditional probability interpretation, the entries of M give a basis for a variety 
of analyses and choice rules for incorporating preferred attributes into new solutions.  Once an 
assignment xj = 1 is made in a solution currently under consideration (which may be either 
partly or completely constructed), an updated conditional matrix M can be created by 
restricting attention to elite solution vectors for which xj = 1.  (Restricted updates of this form 
can also be used for look-ahead purposes.)  Weighted versions of M, whose entries additionally 
reflect the quality of solutions in which specific assignments occur, likewise can be used. 
 
Critical event memory provides a convenient mechanism to maintain appropriate variation 
when conditional influences are taken into account.  The “critical solutions” associated with 
such memory in the present case are simply those constituting a selected subset of elite 
solutions.  Frequency measures for value assignments can be obtained by summing these 
solution vectors for problems with 0-1 representations and the critical event control 
mechanisms can then assure assignments are chosen to generate solutions that differ from 
those of previous elite solutions. 
 
Conditional analysis, independent of such memory structures, can also be a useful foundation 
for generating solution fragments to be exploited by vocabulary building processes. 
 
6.6 Referent-Domain Optimization 

Referent-domain optimization is based on introducing one or more optimization models to 
strategically restructure the problem or neighborhood, accompanied by auxiliary heuristic or 
algorithmic process to map the solutions back to the original problem space.  The optimization 
models are characteristically devised to embody selected heuristic goals (e.g., of intensification, 
diversification or both), within the context of particular classes of problems. 
 
There are several ways to control the problem environment as a basis for applying 
referent-domain optimization.  A natural control method is to limit the structure and range of 
parameters that define a neighborhood (or the rules used to navigate through a neighborhood), 
and to create an optimization model that operates under these restricted conditions. 
 
The examples that follow assume the approach starts from a current trial solution, which may 
or may not be feasible.  The steps described yield a new solution, and then the step is repeated, 
using tabu search as a master guiding strategy to avoid cycling, and to incorporate 
intensification and diversification. 
 
Example 1.  A heuristic selects k variables to change values, holding other variables constant.  
An exact method determines the (conditionally) optimal new values of the k selected variables.  
 
Example 2.  A heuristic identifies a set of restrictive bounds that bracket the values of the 
variables in the current trial solution (where the bounds may compel some variables to take on 
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a single value).  An exact method determines an optimal solution to the problem as modified to 
include these bounds. 
 
Example 3.  A heuristic selects a restructured and exploitable region around the current 
solution to search for an alternative solution.  An exact method finds the best solution in this 
region.  
 
Example 4.  For add/drop neighborhoods, a heuristic chooses k elements to add (or to drop).  
For example, the heuristic may operate by both adding and dropping k specific elements, as in 
k-opt moves for the TSP or k-swap moves for graph bipartitioning that add and drop k nodes.  
Then, attention is restricted to consider only the subset of elements added or the subset of 
elements dropped (and further restricted in the case of a bipartitioning problem to just one of 
the two sets).  Then an exact method identifies the remaining k elements to drop (or to add), 
that will complete the move optimally. 
 
Example 5.  A heuristic chooses a modified problem formulation, that also admits the current 
trial solution as a trial solution.  (For example, the heuristic may relax some part of the 
formulation and/or restrict another part.)  An exact method then finds an optimal solution to 
the modified formulation.  An illustration occurs where a two phase exact algorithm first finds 
an optimal solution to a relaxed portion of the problem, and then finds an optimal solution to a 
restricted portion.  Finally, a small part of the feasible region of the original problem close to or 
encompassing this latter solution is identified, and an exact solution method finds an optimal 
solution in this region. 
 
Example 6.  The use of specially constructed neighborhoods (and aggregations or partitions of 
integer variables) permits the application of mixed integer programming (MIP) models to 
identify the best options from all moves of depth at most k (or from associated collections of at 
most k variables).  When k is sufficiently small, such MIP models can be quite tractable, and 
produce moves considerably more powerful than those provided by lower level heuristics. 
 
Example 7.  In problems with graph-related structures, the imposition of directionality or 
non-looping conditions gives a basis for devising generalized shortest path (or dynamic 
programming) models to generate moves that are optimal over a significant subclass of 
possibilities.  This type of approach gives rise to a combinatorial leverage phenomenon, where a 
low order effort (e.g., linear or quadratic) can yield solutions that dominate exponential 
numbers of alternatives.  (See, e.g., Glover, 1992; Punnen and Glover, 1997: Rego and Glover, 
2009.) 
 
Example 8.  A broadly applicable control strategy, similar to that of a relaxation procedure but 
more flexible, is to create a proxy model that resembles the original problem of interest, and 
which is easier to solve.  Such an approach must be accompanied with a method to transform 
the solution to the proxy model into a trial solution for the original problem.  A version of such 
an approach, which also induces special structure into the proxy model, can be patterned after 
layered surrogate/Lagrangean decomposition strategies for mixed integer optimization. 
 
Referent-domain optimization can also be applied in conjunction with target analysis to create 
more effective solution strategies.  In this case, a first stage learning model, based on controlled 
solution attempts, identifies a set of desired properties of good solutions, together with target 
solutions (or target regions) that embody these properties.  Then a second stage model is 
devised to generate neighborhoods and choice rules to take advantage of the outcomes of the 
learning model.  Useful strategic possibilities are created by basing these two models on a 
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proxy model for referent-domain optimization, to structure the outcomes so that they may be 
treated by one of the control methods indicated in the foregoing examples. 

Conclusion  

It is natural to be tempted to implement the most rudimentary forms of a method.  More than a 
few papers on tabu search examine only a small portion of the elements of short term memory, 
and examine little or nothing at all of longer term memory.  Unfortunately, in some cases these 
papers also present themselves as embodying the essence of tabu search. 
 
A factor that has reinforced the tendency to examine a limited part of tabu search (aside from 
convenience, which can be sensible in early stages of an investigation), is that such a focus has 
sometimes produced very appealing results.  When reasonably decent outcomes can be found 
without great effort, the motive to look further is diminished.  The danger, of course, lies in 
failing to discover significant gains that are likely to be achieved by a more complete approach. 
 
It is appropriate to acknowledge that attention may be given to a limited subset of ideas from 
an overall search framework for the following reasons: 
 

(1)  such a focus may help to uncover a better form for the strategies associated 
with this subset. 

(2)  weaknesses of this subset, when studied in isolation from other ideas, may 
stand out more clearly, thus yielding insights into the features of a more 
complete approach that are required to produce a better method; 

(3)  for methods which are susceptible to highly "modular" implementations, as 
typically occurs for tabu search, simpler designs can readily be made a part 
of more complex designs. 

 
Nevertheless, in many settings, tabu search implementations that incorporate a more 
comprehensive set of its basic strategies typically perform appreciably better than 
implementations that restrict consideration to a narrow set of such strategies.   
 
A great deal remains to be learned about tabu search.  Evidently, we also still know very little 
about how we ourselves use memory in our problem solving.  It is not inconceivable that 
discoveries about effective uses of memory within our search methods will provide clues about 
strategies that humans are adept at employing — or may advantageously be taught to employ.  
The potential links between the areas of heuristic search and psychology have scarcely been 
examined.  Unquestionably, in the realm of optimization, we have not yet investigated the 
strategic possibilities at a level that comes close to disclosing their full potential.  The 
numerous successes of tabu search implementations provide encouragement that such issues 
are profitable to probe more fully. Some of the opportunities and challenges involved are 
discussed in Glover (2007). 
 
Recent fundamental advances in applications of tabu search have been assembled in a 
collection of “Tabu Search Vignettes“ which can be accessed via the internet at 
http://spot.colorado.edu/~glover. These include summaries of key developments in a variety of 
areas, including: 
 

Constraint Solving and Its Applications (Resource Assignment, Planning and 
Timetabling, Integer Programming Feasibility, Satisfiability, Mobile Network 
Frequency Assignment) 
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Chemical Industry Applications (Computer Aided Molecular Design (CAMD), Heat 
Exchanger Network (HEN) Synthesis, Phase Equilibrium Calculations, Gibbs Free 
Energy Minimization, Optimal Component Lumping Problems)  

Classification 
Feature Selection  
Satellite Range Scheduling  
Maritime Transportation for International Trade  
Conservation Area Network Design  
High Level Synthesis  
Graph Coloring 
Delivery  
Routing with Loading and Inventory Constraints 
Heterogeneous Routing and Scheduling  
Capacitated Facility Location  
Multi-period Forest Harvesting 
Manpower Scheduling 
DNA Sequencing 
Airline Disruption Management 
Internet Traffic Engineering  
Matrix Bandwidth Minimization 
Generalized Assignment  
Constraint Satisfaction (Work Shift Scheduling, Set-Covering and Nurse Scheduling) 
Resource-Constrained Project Scheduling  
Dynamic Optimization (Trade Market Prediction, Meteorological Forecast, Robotics 

Motion Control) 
 

Additional topics and references related to tabu search, including these vignettes, will also be 
featured in the website http://www.tabusearch.info/ which is scheduled to debut in November 
2012. 
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